基于EVSEWT的下击暴流时变平均风提取
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU311;TH765

基金项目:

国家自然科学基金资助项目(51778354,51378304)


Time-Varying Mean Wind Extraction of Downburst Based on Energy Valley Searching Empirical Wavelet Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    下击暴流等极端风具有强烈的非平稳特性,给风场特性分析、结构响应计算带来挑战。根据经验将非平稳风分为时变平均风和零均值脉动风分别进行分析,是处理非平稳风速信号的有效方法。分析了几种常见时变均值提取方法的优缺点,在此基础上提出一种基于能量波谷寻找的经验小波变换方法,用于下击暴流时变平均风速提取,并将提取的时变平均风和脉动风用于分析某幢高层建筑顶部位移响应。对2组下击暴流的分析结果得出:与经验模态分解和离散小波变换方法相比,基于能量波谷寻找的经验小波变换方法模型提取的时变平均风更符合预期,对应的结构响应偏于安全。

    Abstract:

    Extreme wind such as downburst has strong non-stationary characteristics, which brings challenges to the analyses of wind field characteristics and structural response. Empirically, this non-stationary wind can be divided into a time-varying mean wind and a zero-mean fluctuating wind, which are effective methods to deal with non-stationary wind speed signals. In this paper, the advantages and disadvantages of several common time-varying mean extraction methods are summarized. On this basis, an empirical wavelet transform method based on energy valley search is proposed to extract the time-varying mean wind velocity of downburst. The extracted time-varying mean wind and fluctuating wind are used to analyze the non-stationary response of the top of a high-rise building. The results of two groups of downburst analyses show that compared with empirical mode decomposition and discrete wavelet transform, the time-varying mean wind extracted by energy valley searching empirical wavelet transform is more in line with expectations, and the corresponding structural response is on the safe side.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-07-02
  • 出版日期: 2020-06-30
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司