基于特征贡献率的机械故障分类方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家重点研发计划资助项目(2016YFF0203303)


Machinery Fault Classification Method Based on Feature Contribution Rate
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高往复压缩机、航空发动机等复杂机械故障分类的准确率,依据特征参数对不同故障的敏感度存在差异的特性,提出一种狄利克雷过程混合模型(Dirichlet process mixture model,简称DPMM)与贝叶斯推断贡献(Bayesian inference contribution,简称BIC)相结合的分析方法。采用DPMM方法自学习机械振动信号高维特征的统计分布模型,并依据BIC理论计算得到各特征参数对模型的贡献率,通过对比观测数据与各类故障数据特征贡献率间的差异实现故障分类。试验结果表明,该方法的平均分类准确率比基于高斯混合模型(Gaussian mixture model,简称GMM)的故障诊断方法的平均分类准确率提高19.29%,比基于Relief算法的故障诊断方法的平均分类准确率提高32.71%,且该方法的时效性高,泛化性能强,能够更有效地进行复杂机械故障分类。

    Abstract:

    In order to improve the accuracy of fault classification of complex machinery such as reciprocating compressor and aeroengine, an analysis method combining Dirichlet process mixture model(DPMM) with Bayesian inference contribution(BIC) is proposed according to the characteristic that the sensitivities of feature parameters are vary from fault to fault. It is used to self-learn the statistical distribution model of high dimensional features of the mechanical vibration signals by DPMM method, and the contribution rate of each feature to the model is calculated according to the BIC theory. The fault classification is realized by analyzing the differences between the feature contribution rates of the observed data and different kinds of fault data. The results indicate that the average classification accuracy of the proposed method increases by 19.29% compared with the fault diagnosis method based on Gaussian mixture model(GMM), and increases by 32.71% compared with the fault diagnosis method based on Relief algorithm. Furthermore, this method has characteristics of high timeliness and strong generalization performance. It can effectively classify the complex mechanical faults.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-07-02
  • 出版日期: 2020-06-30
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司