基于DBNs的轮毂电机机械故障在线诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

(国家自然科学基金资助项目(51775245,51575241);江苏省重点研发计划资助项目(BE2017129)


Online Diagnosis Method for Mechanical Fault of In-Wheel Motor Based on DBNs
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现电动汽车用轮毂电机运行状态在线监测及其安全评估,提出一种基于动态贝叶斯网络(dynamic Bayesian networks, 简称DBNs)的轮毂电机机械故障在线诊断方法。首先,以轮毂电机运行安全为目标,着重考虑车速对轮毂电机振动信号的影响程度,在时域和频域中提炼出多个敏感度高的特征参数来表征轮毂电机的运行状态,并将其作为DBNs的观测节点;其次,基于速度片构建轮毂电机机械故障诊断模型,解决其运行状态在相邻时间片之间无法构建转移概率分布的问题,根据不同速度片之间的转移概率分布,建立以二速度片展开的DBNs,实现对轮毂电机机械故障的在线诊断;最后,通过轮毂电机综合台架试验,验证了该方法对轮毂电机机械故障在线诊断的有效性。

    Abstract:

    To realize online monitoring and safety assessment of in-wheel motor running state for electric vehicles, an online method for mechanical fault diagnosis of in-wheel motor based on dynamic Bayesian networks (DBNs)is proposed in this paper. Multiple parameters highly sensitive to common mechanical faults are chosen as the characterization of in-wheel motor running state and observed nodes of DBNs under the consideration of the effects of vehicle speed on vibration signals of in-wheel motor in time domain and frequency domain for the safety of in-wheel motor running state. To solve the problem that the state transition probability distribution cannot be constructed between two continuous “time slices” of in-wheel motor running state, the mechanical fault diagnosis models for online mechanical fault diagnosis can be established based on two continuous “speed slices” with the state transition probability distributions between the different speeds. Finally, the effectiveness of this method is verified by the experiments of in-wheel motor test bench.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-27
  • 出版日期: 2020-08-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司