基于深度分解的非平稳非高斯过程多步预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU311

基金项目:

国家自然科学基金资助项目(51778354)


Non-stationary and Non-Gaussian Process Multi-step Prediction Based on Hybrid Deep Decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    首先,综合运用小波包分解(wavelet packet decomposition,简称WPD)、样本熵、单位根检验法和变分模态分解(variational mode decomposition,简称VMD),提出利用混合深度分解(hybrid deep decomposition,简称HDD)对非平稳非高斯过程进行处理,降低实测风速风压复杂性,提升其可预测性;其次,根据Mercer定理构造了Morlet+Hermite(MH)线性组合核函数,使其具有局部多分辨性和全局泛化性的优点,采用粒子群算法(particle swarm optimization,简称PSO)对MH核进行参数优化,结合最小二乘支持向量机(least square support vector machine,简称LSSVM)建立HDD-MH-LSSVM多步预测模型;然后,将该模型与常用核函数构成的HDD-Poly-LSSVM,HDD-径向基函数(radial basis function,简称RBF)-LSSVM多步预测模型以及极限学习机(extreme learning machine,简称ELM)多步预测模型形成对比;最后,采用下击暴流风速和台风天大跨膜结构表面实测风压进行大步数多步预测验证。结果表明,HDD-MH-LSSVM预测算法预测精度高、稳定性好、通用性强。

    Abstract:

    The paper focuses on multi-step prediction of non-stationary and non-Gaussian processes. First,hybrid deep decomposition (HDD) is proposed to deal with non-stationary and non-Gaussian processes combining wavelet packet decomposition (WPD), sample entropy, unit root test and variational mode decomposition (VMD). The complexity of measurement of wind speed and pressure is reduced and the predictability is improved. Second, according to Mercer′s theorem, the MH kernel function is constructed by the linear combination of Morlet kernel function and Hermite kernel function, which takes the advantages of local multi-resolution and global generalization. Particle swarm optimization (PSO) is used to optimize the parameters of MH kernel. Least square support vector machine (LSSVM) is used to build HDD-MH-LSSVM multi-step prediction model. The down-burst wind speed and the measured wind pressure on the surface of the large trans-membrane structure of the typhoon are used for large-step multi-step prediction verification. The results show that the HDD-MH-LSSVM prediction algorithm has higher prediction accuracy, good stability and strong versatility.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-27
  • 出版日期: 2020-08-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司