基于KJADE的列车轴承轨边声学诊断方法研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133.3; TH113.1

基金项目:

(国家自然科学基金资助项目(51675001,51505001,51605002)


Fault Diagnosis of Locomotive Bearings Using Wayside Acoustic Signals Based on KJADE
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为在线诊断运行列车的轴承状态,提出一种基于核特征矩阵联合近似对角化(kernel joint approximate diagonalization of eigen-matrices,简称KJADE)的列车轴承轨边声学故障诊断方法。首先,从校正后的轨边信号中提取原始特征,将其通过非线性映射函数映射到高维特征空间;其次,对特征空间的核矩阵进行四阶累积量的特征分解,获得新融合特征,并采用支持向量机分类器对融合特征进行辨识;最后,对轴承外圈、内圈、滚子故障和正常4种状态下的列车轨边声学信号进行分析。结果表明,该方法可以有效实现对列车轴承轨边声音信号的非线性特征提取,提高了故障的识别率。

    Abstract:

    A novel method of wayside acoustic fault diagnosis for locomotive bearings is presented to evaluate the bearings status of running train, which mapped the original features extracted from corrected acoustic signals into a high-dimensional feature space through nonlinear mapping. Where, the original features are extracted from bearing′s acoustic signal acquired by the wayside microphone after Doppler distortion correction being conducted. In the high-dimension feature space, new features can be fused through the eigen-decomposition of the fourth-order cumulative kernel matrix. And the fusion features are extracted from acoustic signals of locomotive bearings with normal condition, inner race defect, outer race defect and ball defect respectively, and identified using the support vector machine classifier. The results show that the proposed method is efficient in nonlinear feature extraction from bearing′s acoustic signals and can obtain high accuracy in fault identification.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-08-27
  • 出版日期: 2020-08-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司