强化学习长短时记忆神经网络用于状态预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3; TH17

基金项目:

(机械传动国家重点实验室开放基金资助项目(SKLMT-KFKT-201718);中国博士后科学基金第60批面上资助项目(2016M602685);四川大学泸州市人民政府战略合作项目(2018CDLZ-30);国家自然科学基金青年科学基金资助项目(51305283)


Reinforcement Learning Long and Short Time Memory Neural Network for State Prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network, 简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3S-LSTMNN中,采用最小二乘线性回归方法构造单调趋势识别器,将旋转机械整体的状态退化趋势分为平稳、下降、上升3种单调的趋势单元,并通过强化学习为每一种单调趋势单元选择一种隐层层数和隐层节点数与之相适应的长短时记忆神经网络,提高了RL-3S-LSTMNN的泛化性能和非线性逼近能力,使所提出的状态退化趋势预测方法具有较高的预测精度。用不同隐层数、隐层节点数和3种单调趋势单元分别表示Q表的动作和状态,并将长短时记忆神经网络(long and short time memory neural network, 简称LSTMNN)输出误差与Q表的更新相关联,避免了决策函数的盲目搜索。结果表明:提高了RL-3S-LSTMNN的收敛速率,使所提出的预测方法具有较高的计算效率;滚动轴承状态退化趋势预测实例验证了该方法的有效性。

    Abstract:

    A new method for predicting the degradation of rotating machinery is proposed based on the reinforcement learning 3-state combined long and short time memory neural network (RL-3S-LSTMNN). The degradation of a rotating machinery is divided into three monotonic parts, naming stationary unit, descending unit and ascending unit, by a monotone trend discriminator based on the least square linear regression method. Moreover, by virtue of reinforcement learning, the proposed method select LSTMNNs with the number of hidden layers and hidden layer nodes number suitable for each monotone trend unit, which improves the generalization performance and nonlinear approximation ability of RL-3S-LSTMNN to obtain a higher prediction accuracy. Besides, different hidden layer and node numbers and three monotonic trend units represent the action and status of the Q table, and the output error of LSTMNN is associated with the update of the Q table to avoid the blind search of agent (i.e., decision function) and accelerate the convergence rate of RL-3S-LSTMNN. Accordingly, the higher computational efficiency can be obtained for the proposed prediction method. A state degradation trend prediction of rolling bearing demonstrates the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-10-27
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司