高速列车牵引变流器故障诊断研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3

基金项目:

工信部智能制造综合标准化与新模式应用资助项目(2017ZNZZ01)


Fault Diagnosis of Traction Converter for High-Speed Train
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高速列车牵引变流器冷却滤网状态异常引发的牵引变流器故障问题,通过综合分析牵引变流器故障分类和滤网堵塞程度之间的相关性,提出一种基于多任务深度学习的故障诊断方法。首先,构建了包含牵引变流器故障诊断主任务及滤网堵塞程度子任务的多任务深度神经网络(multi-task deep neural networks,简称MT-DNN);然后,为了准确预测牵引变流器失效退化趋势,将多任务深度神经网络预测结果与自组织映射(self organizing map,简称SOM)方法结合,构建了多任务深度神经网络自组织映射模型(multi-task deep neural networks self-organizing map,简称MTDNN-SOM),该方法根据历史故障数据特征变量演化规律定义退化状态曲线,直接反映故障特征量和退化状态之间的关系,最终实现了牵引变流器滤网脏堵故障诊断和维修预测。试验结果表明,该方法在精度和效率上都明显优于单任务或传统故障诊断方法,得到了较好的效果。

    Abstract:

    According to the problem of traction converter fault caused by the abnormal condition of cooling filter for high-speed train, a fault diagnosis method based on multi task deep learning is proposed by comprehensively analyzing the correlation between fault classification of traction converter and filter blockage degree. Firstly, a multi-task deep neural network (MT-DNN) including the main task of traction converter fault diagnosis and the sub task of filter blockage degree is constructed. Then, in order to accurately predict the failure and degradation trend of traction converter, the prediction results of MT-DNN and self-organizing mapping (SOM) method are combined to construct the multi-task deep neural network self-organizing mapping model (MTDNN-SOM). This method defines the degradation state curve according to the evolution law of characteristic variables of historical fault data, which directly reflects the relationship between fault characteristics and degradation state, and finally realizes fault diagnosis and maintenance prediction for the cooling filter of traction converter. The experimental results show that the proposed method is superior to the single task or traditional fault diagnosis method in both accuracy and efficiency, and has achieved good results.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-10-27
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司