基于转子故障数据集的KSELF降维方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP18;TH165

基金项目:

国家自然科学基金资助项目(51675253);国家重点研发计划资助项目(2016YFF0203303?04)


KSELF Dimension Reduction Method Based on Rotor Fault Data Set
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对故障诊断中呈现强非线性的故障数据集维数过高以及有标签故障样本不足的问题,引入核方法和半监督思想,提出了一种基于核半监督局部Fisher判别分析(kernel semi?supervised local Fisher discriminant analysis,简称KSELF)的降维方法。首先,通过核方法将原始故障数据集映射到高维特征空间中;其次,在高维空间中基于半监督局部Fisher判别分析得出投影转换矩阵;最后,用一双跨度转子实验台的故障特征数据集对所提出的方法进行了验证。所提出的KSELF降维方法能够有效捕捉数据的非线性信息,并能充分利用少量标签样本和大量无标签故障样本中的故障信息,避免了过学习问题。实验结果表明,KSELF方法相比实验中的其他方法,其降维能力稳定,能够获得更好的降维效果和更高的分类准确率。

    Abstract:

    Aiming at the problem that the dimension of faulty data set with strong nonlinearity in fault diagnosis is too high and the sample of faulty label is insufficient, a kernel semi-supervised local Fisher discriminant analysis (KSELF) is proposed. The method first maps the original fault data set to a high-dimensional feature space by the kernel method, and then derives the projection transformation matrix based on the semi-supervised local Fisher discriminant analysis in the high-dimensional space. The proposed KSELF can effectively capture the nonlinear information of the data, and can fully utilize the fault information in a small number of label samples and a large number of unsigned fault samples, thereby avoiding over-learning problems. The proposed method is validated by the fault characteristic data set of a double-span rotor test bench. The results show thatthe KSELF method has stable dimensionality reduction ability, and can obtain better dimensionality reduction effect and higher classification accuracy, compared with other methods in the experiment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-03
  • 出版日期: 2021-02-28
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司