摘要:针对故障诊断中呈现强非线性的故障数据集维数过高以及有标签故障样本不足的问题,引入核方法和半监督思想,提出了一种基于核半监督局部Fisher判别分析(kernel semi?supervised local Fisher discriminant analysis,简称KSELF)的降维方法。首先,通过核方法将原始故障数据集映射到高维特征空间中;其次,在高维空间中基于半监督局部Fisher判别分析得出投影转换矩阵;最后,用一双跨度转子实验台的故障特征数据集对所提出的方法进行了验证。所提出的KSELF降维方法能够有效捕捉数据的非线性信息,并能充分利用少量标签样本和大量无标签故障样本中的故障信息,避免了过学习问题。实验结果表明,KSELF方法相比实验中的其他方法,其降维能力稳定,能够获得更好的降维效果和更高的分类准确率。