基于CEEMDAN排列熵与SVM的螺旋锥齿轮故障识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH132.422; TH113.1

基金项目:

国家自然科学基金资助项目(11872022,51575177);湖南省科技厅“科技人才专项?湖湘青年英才”资助项目 (2017RS3049);湖南省科技厅重点研发计划资助项目(2015JC3108)


Fault Diagnosis of Spiral Bevel Gear Based on CEEMDAN Permutation Entropy and SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轮齿振动信号识别诊断困难的问题,提出以自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,简称CEEMDAN)排列熵为敏感特征量,通过支持向量机(support vector machine,简称SVM) 进行模式识别,实现螺旋锥齿轮故障辨识的方法。首先,将振动信号进行CEEMDAN,得到一系列从高频到低频的内禀模态函数(intrinsic mode function,简称IMF),利用相关系数计算各IMF分量与原始信号的相关程度,结合信噪比的大小进行含主要故障信息的IMF分量优选;其次,采用重叠组合法对排列熵计算过程中的关键参数——嵌入维数和时延进行优选;最后,以优选IMF的排列熵值组成特征向量,训练多分类SVM进行螺旋锥齿轮故障辨识。将该方法用于3种不同程度螺旋锥齿轮断齿故障的诊断识别,并与基于集总经验模态分解排列熵、经验模态分解排列熵方法进行比较,结果表明,基于CEEMDAN排列熵的故障诊断方法可以更加准确地识别螺旋锥齿轮的故障类型。

    Abstract:

    Spiral bevel gear is a basic transmission component and widely used in mechanical equipment, so it is important to monitor and diagnose its running state to ensure a safe operation. However, the vibration signals of spiral bevel gears are extremely complicated because of the changing number of meshing gear pairs, the position of meshing point and the transmission ratio, and the collisions between teeth during the meshing process. Especially, when the fault occurs, the vibration signals of spiral bevel gears present highly non-linear and non-stationary. This paper proposes a method for identifying the spiral bevel gear fault by using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) permutation entropy as the sensitive features and support vector machines (SVMs) as the classifier. Firstly, the vibration signal is decomposed using CEEMDAN to obtain a series of internal modal functions (IMF) from a high frequency to a low frequency. The effective IMF components are optimized based on the correlation coefficient of each IMF component and the original signal, combining with the signal to noise ratio. Then, the permutation entropy values of the optimized IMFs are calculated. In order to obtain accuracy permutation entropy values, the overlapping parameter method is used to optimize the key parameters embedding dimension and delay time in the process of permutation entropy calculation. The eigenvectors are composed of the entropy values of the optimal IMFs, and the multi-class SVM is trained to identify the spiral bevel gear faults. The CEEMDAN permutation entropy method is applied to fault diagnosis of spiral bevel gears with three different fault states, and comparing with the method of EEMD permutation entropy and EMD permutation entropy. The results show that the fault diagnosis method based on CEEMDAN permutation entropy has a higher identification accuracy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-03
  • 出版日期: 2021-02-28
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司