摘要:为了自适应确定变分模态分解(variational mode decomposition,简称VMD)的有关参数,减少轴承振动信号处理过程中对先验知识的依赖,提出了一种基于微分搜索(differential search,简称DS)的VMD参数自适应寻优算法,结合相关峭度指标实现轴承故障特征自适应提取。首先,采用DS算法对VMD的相关参数进行自适应寻优,并对信号进行VMD;其次,计算各本征模态函数(intrinsic mode functions,简称IMF)的相关峭度值,并利用该指标对各分量进行加权重构;然后,对重构信号进行包络谱分析以提取轴承故障特征;最后,将所提出方法与通过经验模态分解(empirical mode decomposition,简称EMD)方法及人为确定参数的传统VMD进行对比。仿真信号和实验数据分析表明:DS算法可有效确定VMD相关参数组合,且所提出方法可以更加准确、有效地识别出滚动轴承故障特征频率;与快速峭度图方法对比,所提出方法依然可以获得更好的结果。