基于DS⁃VMD及相关峭度的滚动轴承故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17;TH133.3

基金项目:

国家自然科学基金资助项目(51775409);装备预研重点实验室基金资助项目(61420030301)


Rolling Bearing Fault Diagnosis Based on DS⁃VMD and Correlated Kurtosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了自适应确定变分模态分解(variational mode decomposition,简称VMD)的有关参数,减少轴承振动信号处理过程中对先验知识的依赖,提出了一种基于微分搜索(differential search,简称DS)的VMD参数自适应寻优算法,结合相关峭度指标实现轴承故障特征自适应提取。首先,采用DS算法对VMD的相关参数进行自适应寻优,并对信号进行VMD;其次,计算各本征模态函数(intrinsic mode functions,简称IMF)的相关峭度值,并利用该指标对各分量进行加权重构;然后,对重构信号进行包络谱分析以提取轴承故障特征;最后,将所提出方法与通过经验模态分解(empirical mode decomposition,简称EMD)方法及人为确定参数的传统VMD进行对比。仿真信号和实验数据分析表明:DS算法可有效确定VMD相关参数组合,且所提出方法可以更加准确、有效地识别出滚动轴承故障特征频率;与快速峭度图方法对比,所提出方法依然可以获得更好的结果。

    Abstract:

    In order to adaptively determine the parameters of variational mode decomposition (VMD) and reduce the dependence on prior knowledge in signal processing, a parameter optimization-based VMD and signal reconstruction methods by correlated kurtosis indicators is proposed to extract the fault characteristics of rolling bearings. Firstly, the DS algorithm is used to optimize the parameter combination of the VMD, after which the vibration signal is decomposed to obtain the intrinsic mode function (IMF). Then the correlation kurtosis of each IMF is calculated and used to reconstruct the vibration signal. Finally, the envelope spectrum analysis of the reconstructed signal is performed to extract bearing fault features. The proposed method is compared with empirical mode decomposition (EMD) and conventional VMD method, and both the simulation signal and vibration signal show that the proposed method can effectively identify the fault characteristic frequency of the rolling bearing. Furthermore, compared with the widely used fast kurtogram method, the proposed method also shows better results.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-03
  • 出版日期: 2021-02-28
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司