摘要:由于传统退化指标对周期性故障冲击缺乏敏感性和鲁棒性,无法实现风力机轴承退化过程的适时跟踪以及剩余寿命的准确预测,提出了基于包络谐噪比(envelope harmonic?to?noise ratio,简称EHNR)和无迹粒子滤波(unscented particle filter,简称UPF)相结合的风力机轴承实时剩余寿命预测方法。首先,通过计算振动信号的EHNR监测轴承的早期退化点,并提取EHNR的趋势特征作为退化指标;其次,以轴承历史数据构建退化模型,利用UPF算法更新模型参数,实现对轴承退化状态的跟踪和预测;最后,使用实际风力机轴承监测数据对所提方法进行验证。结果表明,该方法能适时启动寿命预测机制,有效解决传统粒子滤波算法的粒子退化问题。与常用的支持向量回归模型(support vector regression,简称SVR)、反向传播神经网络(back propagation neural network,简称BPNN)的预测方法相比,具有较高的预测精度,为大型风力机组的健康管理和可靠性评估提供参考依据。