风力机轴承实时剩余寿命预测新方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17; TH165.3

基金项目:

国家自然科学基金资助项目(51675350);高校应用型研究课题资助项目(2019YYYJ-3)


Novel Method of Real⁃Time Remaining Useful Life Prediction for Wind Turbine Bearings
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于传统退化指标对周期性故障冲击缺乏敏感性和鲁棒性,无法实现风力机轴承退化过程的适时跟踪以及剩余寿命的准确预测,提出了基于包络谐噪比(envelope harmonic?to?noise ratio,简称EHNR)和无迹粒子滤波(unscented particle filter,简称UPF)相结合的风力机轴承实时剩余寿命预测方法。首先,通过计算振动信号的EHNR监测轴承的早期退化点,并提取EHNR的趋势特征作为退化指标;其次,以轴承历史数据构建退化模型,利用UPF算法更新模型参数,实现对轴承退化状态的跟踪和预测;最后,使用实际风力机轴承监测数据对所提方法进行验证。结果表明,该方法能适时启动寿命预测机制,有效解决传统粒子滤波算法的粒子退化问题。与常用的支持向量回归模型(support vector regression,简称SVR)、反向传播神经网络(back propagation neural network,简称BPNN)的预测方法相比,具有较高的预测精度,为大型风力机组的健康管理和可靠性评估提供参考依据。

    Abstract:

    Due to the lack of sensitivity and robustness to periodic fault shocks,the traditional degradation indicators are unable to track the degradation process of wind turbine bearings timely and predict remaining useful life accurately. In this paper, a real-time remaining useful life prediction method for wind turbine bearings based on the combination of envelope harmonic-to-noise ratio (EHNR) and unscented particle filter (UPF) is proposed. Firstly, the early degradation starting point of the bearing is detected by calculating the EHNR of the vibration signal and the trend characteristic of the EHNR is extracted as the novel degradation indicator. Secondly, the degradation model of bearing is constructed on the basis of historical data, and then the UPF algorithm is used to update the model parameters in order to realize the tracking and prediction of the bearing degradation stage. Finally, the actual monitoring data of wind turbine bearings is taken as an example to validate the proposed method, the results show that this method can start the life prediction mechanism in time and effectively solve the problem of particle degradation in traditional particle filter algorithm. Compared with commonly used support vector regression (SVR) and back propagation neural network(BPNN) prediction methods, it has higher prediction accuracy, and provides a reference for health management and reliability evaluation of large wind turbines.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-03
  • 出版日期: 2021-02-28
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司