基于图建模特征提取的滚动轴承故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133.33

基金项目:


Rolling Bearing Fault Diagnosis Based on Graph Modeling Feature Extraction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滚动轴承运行过程中的早期故障检测与诊断,提出了一种基于图建模特征提取的滚动轴承故障诊断方法。首先,结合短时傅里叶变换与图谱理论对信号进行图建模;其次,通过随机幂鞅对故障进行检测,计算邻接矩阵熵值并将其作为特征向量训练支持向量机;最后,结合支持向量机对故障进行诊断。分别采用2个数据库对本方法进行故障检测与诊断验证,实验结果表明,该方法能够有效检测和诊断轴承故障,并通过与常用方法进行对比,表明了该方法的优越性。

    Abstract:

    Aiming at the early fault detection and diagnosis of rolling bearings during its successive operations, a fault diagnosis method of rolling bearings based on graph modeling feature extraction is proposed. The signal is modeled by the short-time Fourier transform and graph theory. First, the time-frequency map of the signal is obtained by the short-time Fourier transform, extracted the spectrum map of each window. The frequency range is divided into a certain number of frequency segments, to calculate the energy of each frequency segment and to build a graph model with it. Second, the Martingale-test is used to fault detection, computing an adjacent matrix entropy value as a feature vector training support vector machine (SVM). Finally the SVM classifer is used to identify the fault type. Two public data sets are used to validate the proposed method on the fault detection and fault diagnosis, respectively. The results show that the method can effectively detect and diagnose the bearing fault, and the effect is better than other methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-05
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司