利用DCNN融合多传感器特征的故障诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3; TP206.3

基金项目:

国家自然科学基金面上资助项目(51675253);国家重点研发计划资助项目(2016YFF0203303?04);河南省科技攻关资助项目(202102210264)


Mechanical Fault Diagnosis Method Based on Multi⁃sensor Signal Feature Fusion Using Deep Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    缘于多传感器信号的融合能够更加准确地诊断机械故障,针对传统浅层融合模型对复杂数据非线性映射与特征表示能力较弱的问题,提出一种利用深度卷积神经网络(deep convolutional neural network, 简称DCNN) 融合多传感器信号特征的机械故障诊断方法。首先,对多传感器振动信号分别进行特征提取,将获得特征向量作为一维特征面构造多传感器特征面集合,将该集合作为深度卷积神经网络的输入;其次,利用深度网络结构实现对多通道特征面的自适应层级化融合与提取;最后,由softmax回归分类器输出诊断结果。实验结果表明,该方法具有更高的故障分类与辨识能力,良好的鲁棒性和自适应性。本方法可为解决复杂机械系统故障诊断的多传感器信息融合问题,提供理论参考依据。

    Abstract:

    Using multi-sensor data fusion for mechanical fault diagnosis can obtain higher accuracy, but traditional shallow fusion models have a weaker ability of nonlinear mapping and feature representation for complex data sets. Therefore, a multi-sensor data fusion method based on deep convolutional neural network (DCNN) for mechanical fault diagnosis is proposed. Firstly, multi-sensor vibration signals are extracted separately, and the feature vectors are obtained as one-dimensional feature surfaces to construct a set of multi-sensor feature surfaces, which is used as input of DCNN. Then, adaptive hierarchical fusion and extraction of multichannel features are realized with the deep network structure. Last, diagnosis results are output by softmax regression classifier. The experiment results show that this method has a higher ability of fault classification and identification, and a good robustness and adaptability under different noisy environments. This study provides a theoretical base for solving the multi-sensor information fusion problem of complex mechanical fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-05
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司