摘要:缘于多传感器信号的融合能够更加准确地诊断机械故障,针对传统浅层融合模型对复杂数据非线性映射与特征表示能力较弱的问题,提出一种利用深度卷积神经网络(deep convolutional neural network, 简称DCNN) 融合多传感器信号特征的机械故障诊断方法。首先,对多传感器振动信号分别进行特征提取,将获得特征向量作为一维特征面构造多传感器特征面集合,将该集合作为深度卷积神经网络的输入;其次,利用深度网络结构实现对多通道特征面的自适应层级化融合与提取;最后,由softmax回归分类器输出诊断结果。实验结果表明,该方法具有更高的故障分类与辨识能力,良好的鲁棒性和自适应性。本方法可为解决复杂机械系统故障诊断的多传感器信息融合问题,提供理论参考依据。