基于协整理论的滚动轴承退化特征提取
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133.33;TP806+.3

基金项目:

国家自然科学基金资助项目(51541506)


Extraction of Degradation Feature for Rolling Bearings Based on Cointegration Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过分析滚动轴承全寿命数据均方根(root mean square,简称RMS)和样本熵的演化规律,发现两特征间存在一定的协整关系,提出了一种基于协整理论的滚动轴承退化特征提取方法。将不同的滚动轴承全寿命数据统一起来,得到具有一致性的演变过程。采用多组滚动轴承全寿命数据进行实例分析,验证了该方法所提特征的优势,深入研究了所提特征具有两段性和一致性的原因。通过分析看出,相对于RMS和样本熵,所提出特征在非平稳阶段的单调性更好。对比了协整融合和常用融合算法的不同,分析结果表明,所提特征具有良好的两段性与一致性,具有更好的故障预测能力。

    Abstract:

    By analyzing the root-mean-square (RMS) and sample entropy evolution on the run-to-failure data of rolling bearing, it is found that there is a certain cointegration relationship between the two features, and a method for extracting degradation feature of rolling bearing is proposed based on cointegration theory. The proposed feature has a good two-stage property, and it can unify the run-to-failure data of different rolling bearings and obtain a consistent evolution process. By using several run-to-failure datasets of rolling bearings, the advantages of the proposed feature are verified. At the same time, the reasons for the two-stage and consistency of the proposed features are studied in depth. Compared with RMS and sample entropy, the proposed feature has better monotonicity and better prediction ability in non-stationary stage. Finally, the differences between cointegration fusion and common fusion algorithms are compared. By comparison and analysis, the proposed feature has good two-stage property and consistency, and has better prognostic ability than RMS and sample entropy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-05
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司