基于改进Mask⁃RCNN的飞行器结构裂纹自动检测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH878

基金项目:

中国飞机强度研究所创新基金资助项目(BYST?CKKJ?20?027);航空基金(青年基金)资助项目(2020Z061023001)


An Automatic Crack Detection Method for Structure Test Based on Improved Mask⁃RCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    计算机视觉的裂纹自动识别算法在飞机结构疲劳试验中具有较好的工程应用前景,但由于飞机结构构型多样及疲劳试验环境复杂,传统方法的裂纹识别准确率难以满足要求。针对此问题,设计了一种基于关键结构定位的检测策略,并以目标分割算法掩码?区域卷积神经网络(Mask?region convolutional neural network, 简称Mask?RCNN )为基础对模型架构和非极大值抑制模块进行了适应性改进,提出了一种裂纹自动识别方法。该方法具有主动避开干扰因素、对图片质量要求较低的特点,同时利用Mask?RCNN将像素信息引入参数优化的特性,具备更高的识别准确率。在元件疲劳试验中,该方法对铆钉、裂纹的识别准确率分别为100%和87.5%,相较于现有方法优势显著。

    Abstract:

    The algorithm of automatic crack identification based on computer vision has a good application prospect in aircraft structural fatigue test. However, due to the diversity of aircraft structure and the complexity of fatigue test environment, the accuracy of traditional methods for crack identification is difficult to meet the requirements. Therefore, a detection strategy based on key structure location is designed, and the model architecture and non-maximum suppression module are improved based on Mask-region convolutional neural network (Mask-RCNN), and an automatic crack identification method is proposed. This method has the characteristics of avoiding interference factors actively and having low requirements on picture quality. Meanwhile, it adopts the feature of adopting the pixel information into parameter optimization by using Mask-RCNN, which has a higher recognition accuracy rate. In component fatigue test, the identification accuracy of rivet and crack by this method is 100% and 87.5%, respectively, which has a significant advantage over the existing method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-25
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司