基于SCAE⁃ACGAN的直升机行星齿轮裂纹故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3; V214.3+3; TP206

基金项目:

航空科学基金资助项目(KY?52?2018?0024)


Fault Diagnosis of Helicopter Planetary Gear Tooth Crack Based on SCAE⁃ACGAN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    直升机行星传动轮系结构复杂、工况多变,其振动信号受工况影响大,在故障样本较少的情况下导致行星齿轮箱故障诊断准确率不高,早期故障诊断困难。针对上述问题,提出将堆栈收缩自动编码网络(stacked contractive autoencoder, 简称SCAE)与辅助分类生成式对抗网络(auxiliary classifier generative adversarial networks, 简称ACGAN)相结合的SCAE?ACGAN故障诊断方法。ACGAN的生成器产生与真实样本具有类似分布的生成样本,扩展训练样本集,并与真实样本一起输入至判别器进行训练。ACGAN采用SCAE作为判别器,利用SCAE良好的抗数据波动能力,从扩展样本集中挖掘出有效的深度特征,并实现样本的真伪与类别的判定。ACGAN的判别器和生成器在对抗学习训练机制下交替优化,提高方法的样本生成质量与故障判定能力。将SCAE?ACGAN应用于直升机行星轮裂纹故障诊断,结果表明,SCAE?ACGAN的故障诊断性能好,在样本数量少与工况变化情况下具有较好的健壮性和适应性。

    Abstract:

    On accounts of complex structures and changeable operating conditions of helicopter planetary gear train, the vibration signal is complicated and disturbed by fluctuating working environment. Moreover, various fault patterns and less samples increase the difficulty of the planetary gear train fault diagnosis. Aiming at these problems, a new fault diagnosis model named stacked contractive autoencoders-auxiliary classifier generative adversarial networks (SCAE-ACGAN) is proposed, which combines SCAE and ACGAN. The generator of ACGAN generates new samples which are similar to original samples, expanding diagnosis samples. Then, new samples are transformed to discriminator with original samples. SCAE is used as the discriminator of ACGAN to extract good robustness fault features from input samples and discriminate its authenticity and categories. Through adversarial learning, the generator and discriminator are alternatively optimized to improve the abilities of generation and discrimination. We evaluate the proposed methods on diagnosis of helicopter planetary gear tooth crack fault. From the experimental results, the SCAE-ACGAN can improve anti-noise ability and get better diagnosis performance in less samples cases. The experimental results show that SCAE-ACGAN exhibits the excellent performance of fault diagnosis, and has good robustness and adaptability in the case of small number of samples and fluctuation in working conditions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-25
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司