FDM和RCMDE结合的特征提取与故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165+.3

基金项目:

国家自然科学基金资助项目(51365040);博士启动基金资助项目(EA202003380)


Feature Extraction and Fault Diagnosis Based on FDM and RCMDE
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提取有效特征向量以实现航空发动动机转子的故障诊断,针对航空发动机转子振动信号的非线性、非平稳的特性,首先,应用傅里叶分解方法(Fourier decomposition method,简称FDM)提取航空发动机转子信号的边际谱重心及最大能量层的谱重心;其次,计算振动信号的精细复合多尺度散布熵;最后,应用双阶自适应小波聚类方法对特征空间实现故障分类与识别。应用航空发动机转子试验器采集的样本验证表明,上述方法提取的特征值准确且波动小,同种故障类型的特征值集中,不同故障类型之间差异大,有利于提高多种故障类型混合的诊断精度。

    Abstract:

    Feature extraction is particularly important for diagnosing the faults of aero-engine rotor. Based on the nonlinearity and nonstationarity of vibration signal of aero-engine rotor, first of all, Fourier decomposition method (FDM) is applied to signal of aero-engine rotor. The marginal spectrum centroid and the power spectral centroid of maximum energy layer are extracted. Then the refined composite multiscale dispersion entropy (RCMDE) of vibration signal is calculated. Finally, the method of two-stage adaptive wavecluster is applied to fault classification and recognition of eigenvector space. Through the sample verification of the aero-engine rotor test rig, it is shown that the extracted characteristic vectors are accurate and fluctuated little, the value of the same fault type is concentrated, and the difference between different fault types is large, which are helpful to improve the diagnosis accuracy of multiple-faults.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-25
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司