基于ARIMA⁃LSTM的飞机液压泵性能趋势预测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH136; TP206+.3

基金项目:

国家自然科学基金资助项目(51605309);航空科学基金资助项目(201933054002,20163354004);辽宁省教育厅基金资助项目(JYT2020021)


Aircraft Hydraulic Pump Performance Trend Prediction Method Based on ARIMA⁃LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对飞机液压泵工作强度高、工作环境复杂而导致传统性能预测方法对飞机液压泵性能变化趋势预测精度不高的问题,提出了一种基于自回归积分滑动平均长短期记忆(autoregressive integrated moving average long short term memory,简称ARIMA-LSTM)网络的飞机液压泵性能趋势预测方法。首先,将获取的飞机液压泵性能表征参数回油流量数据进行线性分解,得到趋势项数据和细节项数据;其次,采用自回归积分滑动平均(autoregressive integrated moving average ,简称ARIMA)方法对趋势项数据进行预测,同时采用长短期记忆(long short term memory,简称LSTM)网络方法对归一化处理后的细节项数据进行预测;最后,将两部分预测结果进行叠加,得到最终的性能趋势预测结果。研究结果表明,采用ARIMA-LSTM的联合预测方法对飞机液压泵性能变化趋势的预测效果明显优于单一的ARIMA与LSTM预测方法,为飞机液压泵性能变化趋势预测的工程应用提供了一种新方法。

    Abstract:

    The traditional performance prediction method has low prediction accuracy for military aircraft hydraulic pump performance in high working intensity of military aircraft hydraulic pump and complicated working environment. Aiming at this problem, an military aircraft hydraulic pump performance trend prediction method is proposed based on the autoregressive integrated moving average (ARIMA) model and long short term memory (LSTM) network. Firstly, the obtained raw data of aircraft hydraulic pump performance characterization parameters are linearly decomposed to obtain trend item data and detail item data. Then, the ARIMA method is used to predict the trend item data, and the LSTM method is used to predict the normalized detail item data, and finally the two parts of the prediction result are superimposed to obtain the final performance trend prediction result. The research results show that the combined prediction method of ARIMA-LSTM is better than the single ARIMA or LSTM prediction methods for predicting the trend of aircraft hydraulic pump performance, which provides a new method for engineering application of aircraft hydraulic pump performance change trend prediction.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-25
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司