基于深度融合策略的转子轴心轨迹识别研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113.2;TN 911.72

基金项目:

国家自然科学基金资助项目 (51875205,51875216); 广东省自然科学基金资助项目(2018A030310017,2019A1515011780);广东省教育厅资助项目(2018KQNCX191);广州市科技计划资助项目(201904010133);广东省重大科技专项资助项目(2019B090918003);广西科技大学博士基金资助项目(校科博21z59)


Rotor Axis Locus Recognition Based on Deep Fusion Strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对以人工特征为输入的旋转机械故障的传统智能识别方法的精度较低及深度学习方法对数据量依赖性强的问题,鉴于Hu不变矩具有伸缩、平移及旋转不变性的特点及无监督深度学习模型在小样本数据特征提取方面的优势,提出了一种融合Hu不变矩及深度卷积自动编码特征的故障诊断模型(deep convolutional auto?encoder fault diagnosis model,简称DCAE-FDM)。首先,采用有效奇异值法对原始振动信号进行提纯,得到提纯的轴心轨迹集,并按一定比例划分为训练集和测试集,分别计算出它们的Hu不变矩特征;其次,利用所构造的DCAE-FDM模型对轴心轨迹进行自适应特征提取,得到深度自动编码特征;然后,将Hu不变矩与深度自动编码特征进行融合,并将训练集的融合特征作为输入对BP神经网络进行训练;最后,采用测试集的融合特征对训练好的模型进行测试。试验结果表明,所提方法的识别效果明显优于深度学习方法及传统识别方法,所提方法的平均准确率达98.5%,比次优模型高出约6个百分点。

    Abstract:

    Aiming at the low accuracy of traditional intelligent fault identification methods of rotating machinery with artificial features as input and the strong dependence of deep learning methods on data volume, Hu invariant moment has the characteristics of telescopic translation and rotation invariance and the advantages of unsupervised learning deep learning model in feature extraction of small sample data. A deep convolutional auto-encoder fault diagnosis model (DCAE-FDM) is proposed, which integrates Hu invariant moment and DCAE features. Firstly, the effective singular value method is used to purify the original vibration signals, and the purified axis orbits are obtained, which are divided into training set and test set in a certain proportion, and the Hu invariant moments of them are calculated respectively. Secondly, the constructed DCAE-FDM model is used to extract the deep auto encoding features. Thirdly, the two features are fused together, and the fusion features of training set are taken to train back propagation (BP) neural network. Finally, the fusion feature of test set is used to test the trained model. Results show that the recognition effect of the proposed method is significantly better than that of the deep learning method and the traditional recognition method. The average accuracy of the former is 98.5%, about 6 percentage points higher than that of the suboptimal model.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-05
  • 出版日期: 2021-12-31
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司