基于形态学多重分形的风电机组轴承故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17;TH133.3

基金项目:

国家自然科学基金资助项目(61763037);内蒙古自治区科技计划资助项目(2019,2020GG0283);内蒙古自然科学基金面上资助项目(2020MS05029)


Fault Diagnosis of Wind Turbine Bearing Based on Morphological Multi⁃fractal Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风电机组滚动轴承振动信号通常具有非线性和低信噪比的特点,提出一种基于形态学多重分形(morphological multi?fractal, 简称MMF)和改进的灰色关联分析(improved grey relational analysis, 简称IGRA)的滚动轴承故障诊断方法。首先,通过信号质量指数研究了轴承振动信号的多重分形特性;其次,利用形态学方法计算轴承各种状态广义维数与多重分形谱的参数,并分析了各个参数对轴承运行状态的反映能力,选取能够有效区分轴承状态的参数作为故障特征量;然后,引入离差最大化加权对经典的灰色关联模型进行改进,提升了信息的利用率以及模型的可靠性;最后,利用改进的灰色关联分析实现了滚动轴承的故障诊断。通过仿真分析和应用实例对该方法的有效性进行验证,结果表明该方法能准确识别轴承故障类型,较传统方法准确率更高,运算时间更短,适合解决实际工程问题。

    Abstract:

    This paper presents a fault diagnosis scheme based on morphological multi-fractal (MMF) analysis and improved grey relational analysis (IGRA) for rolling element bearings. In this scheme, firstly, the multi-fractal characteristics of bearing signals are illustrated by quality index and partition function. Secondly, the parameters of generalized fractal dimension and multi-fractal spectrum in different bearing operating conditions are calculated by morphology, from which some parameters with good discrimination ability are selected as fault-related feature. Thirdly, maximizing deviation is employed to improve the reliability of the classical grey relational analysis. Finally, the effectiveness of this method is verified by simulation analysis and application example. The results show that the proposed scheme can recognize the different fault categories, which is more stable and higher accurate than the traditional method, and the operation time is shorter, which is suitable for solving practical engineering problems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-05
  • 出版日期: 2021-12-31
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司