摘要:综合量子粒子群优化算法(quantum particle swarm optimization,简称QPSO)的全局搜索能力与隐马尔科夫模型(hidden Markov model,简称HMM)良好的时间序列分类能力,提出一种基于QPSO?HMM的滚动轴承故障程度辨识方法,并利用实测振动信号对该方法的性能进行验证。首先,采用变分模态分解对实测振动信号进行分解,并用奇异值分解进行信号特征提取;其次,利用QPSO算法和样本信号对HMM进行训练;最后,将测试信号输入训练得到的HMM中进行滚动轴承故障程度辨识。结果表明,该算法解决了HMM的参数估计局部最优化问题,对滚动轴承不同故障程度的辨识准确率较高。