基于QPSO⁃HMM的滚动轴承故障程度辨识
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133.33; TH165

基金项目:

国家自然科学基金资助项目(11702178);辽宁省博士启动基金资助项目(20180540013);辽宁省教育厅资助项目(LQ2019008)


Fault Degree Identification of Rolling Bearing Based on QPSO⁃HMM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    综合量子粒子群优化算法(quantum particle swarm optimization,简称QPSO)的全局搜索能力与隐马尔科夫模型(hidden Markov model,简称HMM)良好的时间序列分类能力,提出一种基于QPSO?HMM的滚动轴承故障程度辨识方法,并利用实测振动信号对该方法的性能进行验证。首先,采用变分模态分解对实测振动信号进行分解,并用奇异值分解进行信号特征提取;其次,利用QPSO算法和样本信号对HMM进行训练;最后,将测试信号输入训练得到的HMM中进行滚动轴承故障程度辨识。结果表明,该算法解决了HMM的参数估计局部最优化问题,对滚动轴承不同故障程度的辨识准确率较高。

    Abstract:

    Based on the global search ability of quantum particle swarm optimization (QPSO) and the excellent time series classification ability of hidden Markov model (HMM), a method of fault degree identification of rolling bearing is proposed, and the performance of the method is verified by the measured vibration signal. Firstly, the measured vibration signal is decomposed by the variable mode decomposition , and the signal feature is extracted by the singular value decomposition. Then, the hidden Markov model is trained by QPSO algorithm and the sample signals, the trained hidden Markov model is used for bearing fault degree identification. Finally, the test signal is input into the model to identify the fault degree of rolling bearing. The results show that this algorithm can solve the problem of local optimization of parameters estimation of hidden Markov model, and can get high accuracy of fault degree identification of rolling bearing.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-05
  • 出版日期: 2021-12-31
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司