信息熵融合的PSO‑SVC涡旋压缩机故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH455

基金项目:

国家自然科学基金资助项目(51665035)


PSO⁃SVC Fault Diagnosis of Scroll Compressor Based on Information Entropy Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对涡旋压缩机振动信号的不稳定性及难以获取大量故障样本的问题,提出了一种信息熵融合与粒子群优化(particle swarm optimization,简称PSO)的支持向量回归(support vector classification,简称SVC )涡旋压缩机故障诊断方法。通过奇异谱熵和功率谱熵分析,分别提取振动信号时域与频域特征,采用变分模态分解(variational mode decomposition,简称VMD )能量熵衡量故障振动信号时?频域特征,利用因子分析融合奇异谱熵、功率谱熵和能量熵值得到单一评价指标特征向量。将评价指标作为PSO-SVC模型的输入,通过训练建立PSO-SVC涡旋压缩机故障分类模型。实验结果表明,该方法在小样本情况下,仍能有效地对涡旋压缩机4种典型故障类型进行分类,准确率达到94.5%。

    Abstract:

    Aiming at the instability of vibration signal of scroll compressors and the difficulty in obtaining a large number of fault samples, a fault diagnosis method based on information entropy fusion and particle swarm optimization-support vector classification (PSO-SVC) for scroll compressors is proposed to determine its fault types. Firstly, the singular spectrum entropy of time-domain, the power spectrum entropy of frequency-domain and the variational mode decomposition (VMD) energy entropy of time-frequency domain are extracted to calculate the information entropy of vibration signals. Then the single evaluation index eigenvector is obtained by fusing the above three types of entropy using factor analysis method. Lastly, the scroll compressor PSO-SVC fault classification model is established through signal data training after the evaluation index is input into the PSO-SVC model. The experimental results show that this method can effectively classify four typical fault types of scroll compressors with 94.5% accuracy in the case of small sample size.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-06
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司