摘要:针对变工况条件下轴承训练数据集和测试数据集存在分布差异,导致智能诊断模型泛化能力不足,且需针对不同任务分别建模问题,提出一种基于多尺度混合域特征提取(multi-scale mixed domain feature extraction,简称MMDFE)和领域自适应(domain adaptation, 简称DA)的滚动轴承智能故障诊断方法。首先,引入变分模态分解提取多尺度混合域特征,构建完备的特征空间;其次,通过随机森林算法实现特征的降维和优选,消除冗余信息;然后,应用优选后的特征结合流形嵌入式分布对齐方法实现不同领域数据的分布对齐及跨域诊断;最后,采用不同工况下的数据集进行验证,并与传统的智能诊断方法和迁移学习方法进行对比,结果表明,所提方法可以准确有效实现跨域诊断。