基于MMDFE⁃DA的滚动轴承故障诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17; TP18

基金项目:

点研发计划资助项目(2020YFB1710002);国家自然科学基金资助项目(51775409);装备预研共用技术和领域基金资助项目(6140004030116JW08001)


Rolling Bearing Fault Diagnosis Based on Multi⁃scale Mixed Domain Feature Extraction and Domain Adaptation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对变工况条件下轴承训练数据集和测试数据集存在分布差异,导致智能诊断模型泛化能力不足,且需针对不同任务分别建模问题,提出一种基于多尺度混合域特征提取(multi-scale mixed domain feature extraction,简称MMDFE)和领域自适应(domain adaptation, 简称DA)的滚动轴承智能故障诊断方法。首先,引入变分模态分解提取多尺度混合域特征,构建完备的特征空间;其次,通过随机森林算法实现特征的降维和优选,消除冗余信息;然后,应用优选后的特征结合流形嵌入式分布对齐方法实现不同领域数据的分布对齐及跨域诊断;最后,采用不同工况下的数据集进行验证,并与传统的智能诊断方法和迁移学习方法进行对比,结果表明,所提方法可以准确有效实现跨域诊断。

    Abstract:

    In view of the inconsistencies in the distribution of the bearing data training set and test set under variable working conditions, the generalization ability of the intelligent diagnosis model is insufficient, and the problem needs to be modeled separately for different tasks. The paper proposes an intelligent fault diagnosis method for rolling bearings based on multi-scale mixed domain feature extraction and domain adaptation. Firstly, the variational mode decomposition is used to extract the features of the multi-scale mixed domain which constructs a complete feature space. Secondly, the dimensionality reduction and optimization of features are realized through the random forest algorithm to eliminate redundant information. Finally, the optimized features are combined with the manifold embedded distribution alignment method to realize the distribution alignment of data in different fields and cross-domain diagnosis. Data sets under different working conditions are used for verification, and compared with traditional intelligent diagnosis methods and traditional transfer learning methods, the results show that the proposed method can accurately and effectively realize cross-domain diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-06
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司