基于改进DBNs的三维叶尖间隙叶片裂纹诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U226.8+1; V232.4; TH17

基金项目:

国家自然科学基金资助项目(52175117,51575436)


Fault Diagnosis for Three‑Dimension Blade Tip Clearance Based on Turbine Blade Crack by New Improved Deep Belief Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对航空发动机结构复杂、干扰因素多、叶片裂纹特征提取困难及难以精确诊断等问题,提出一种基于改进深度信念网络(deep belief networks, 简称DBNs)的三维叶尖间隙叶片裂纹特征提取与诊断方法。首先,根据DBNs重构误差的传递规律,通过全局反向重构(global back-reconstruction, 简称GBR)机制构建一种能自适应调节深度的DBNs, 以避免深层特征退化导致的特征表征能力不足的问题;其次,利用改进DBNs从叶片三维叶尖间隙中自适应学习深层裂纹特征;最后,采用Softmax回归模型建立深层特征与叶片裂纹间的复杂映射,实现叶片裂纹精确诊断。叶片裂纹诊断试验结果表明:所提方法能有效提取叶片裂纹特征,平均诊断精度达到98.43%,标准差仅为0.092%,具有较好的稳定性和泛化能力,能有效实现叶片裂纹诊断。

    Abstract:

    Due to the complex internal structure and multiple interference factors for aero-engine, it is difficult to extract features of the blade cracks and diagnose crack fault accurately. Hence, the paper proposes a new improved deep belief networks (DBNs) for feature learning, which is used to fault diagnosis for the blade cracks based on three-dimension blade tip clearance (3-DBTC). Firstly, based on the law of reconstruction error transmitting in hidden layers, the paper creates a new variant of DBNs to adaptively adjust the depth with global back-reconstruction (GBR) mechanism, aiming at avoiding feature degradation with an increase in depth of DBNs and then causing insufficient of the representation ability in features; Then, the variant of DBNs is adopted to adaptively learn the blade crack deep-level features from the multi-dimensional signal 3-DBTC involving characteristic information of the blade cracks; Finally, the softmax regression model is used to build the complex mapping between the deep-level features and the blade cracks, accomplishing the accurate diagnosis for the blade cracks. The experimental results demonstrate that the proposed method can fully mine characteristic information of the blade cracks, and effectively improve the diagnosis accuracy, yielding average accuracy of 98.43%, and its standard deviation is only 0.092%, showing its stability and generalization ability are also pretty good and achieving effective fault diagnosis for the blade cracks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-06
  • 出版日期: 2022-04-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司