改进1DCNN与相似性度量增强的齿轮箱故障识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133.3; TH17

基金项目:

国家重点研发计划资助项目(2020YFB1709902);国家自然科学基金资助项目(51705302);上海市“科技创新行动计划”专项资助项目(21SQBS01400)


Gearbox Fault Identification Based on Improved One‑Dimensional Convolutional Neural Network and Similarity Measure Function Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    齿轮箱发生故障时,因振源耦合等因素,各类单一故障和复合故障间具有一定共性特征,造成传统的基于卷积神经网络(convolutional neural network, 简称CNN)的智能诊断方法准确率下降和诊断性能鲁棒性差。针对上述问题,提出一种新的基于一维卷积神经网络(one-dimensional CNN, 简称1DCNN)的齿轮箱故障智能识别方法。该网络引入LeakyRelu激活函数替代原网络结构卷积层中的激活函数,防止训练时的神经元失效;利用LookAhead优化器,避免反向参数优化时训练结果收敛于局部极值;提出相似性损失度量函数,最小化同类样本序列间距的同时最大化不同类样本序列间距,以强化网络结构的标签识别能力和分类稳定性。将上述网络命名为sLL-1DCNN,利用齿轮箱故障模拟试验台信号对网络进行训练并识别各类故障,结果表明,该网络在训练集样本序列数量较少时具有更好的特征提取和泛化能力,且在训练集样本序列数量增加时,具备优于其他3种CNN的分类能力和分类稳定性。

    Abstract:

    Due to the couplings among different vibration sources and other factors, single and compound faults in the gearbox usually show specific shared characteristics, leading to inaccurate diagnosis results. Meanwhile, the traditional convolutional neural network (CNN) based methods often show poor robustness when facing such circumstances. This paper proposes a new intelligent identification method of gearbox fault based on a one-dimensional CNN (1DCNN) to improve the performance of the above methods. In this network, the LeakyRelu activation function is introduced to replace the activation function in the convolution layer of the original network structure to prevent neuron failure during training. The LookAhead optimizer is used to avoid the training result converging to the local extremum during reverse parameter optimization. Also, a similarity loss measurement function is proposed to minimize the sequence spacing of similar samples and maximize the sequence spacing of different samples to strengthen the label recognition ability and classification stability of the network structure. The above network is named sLL-1DCNN. Moreover, the signals collected on the gearbox fault simulation test-bed are used to train the network and identify various types of faults. The results show that the network has better feature extraction and generalization ability when the number of sample sequences in the training set is small. The classification ability and stability are better than the other three CNNs when the number of sample sequences in the training set increases.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-06
  • 出版日期: 2022-04-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司