基于双树复小波变换与样本熵的自适应降噪法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH215

基金项目:

上海市科委资助项目(15DZ1161203)


Adaptive Denoising of Monitoring Signal Based on Dual‑tree Complex Wavelet Transform and Sample Entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现工程机械结构监测信号降噪效果的评价,将样本熵的概念引入双树复小波分解中,提出基于双树复小波变换(dual-tree complex wavelet transform, 简称DT-CWT)与样本熵(sample entropy,简称SE)相结合的监测信号自适应降噪方法(DT-CWT-SE)。首先,采用双树复小波变换对含有噪声的监测信号进行多层分解;其次,分别计算双树复小波分解所得的各尺度细节分量样本熵与相邻尺度细节分量的样本熵的差值,通过比较相邻各尺度样本熵之差的大小确定双树复小波最优分解层数;最后,根据各尺度样本熵的变化规律确定各层小波系数的降噪阈值,对降噪后的小波系数进行重构以实现信号自适应降噪。仿真分析与实验对比结果表明:该方法对监测信号去噪较彻底,且降噪后的信号失真度小,降噪效果以及保留原信号信息完整性的能力明显优于传统小波阈值降噪法。

    Abstract:

    In order to evaluate the denoising effect of the mechanical structure monitoring signal, the concept of information entropy is introduced into the dual tree complex wavelet decomposition. Adaptive denoising method of the monitoring signal combined dual-tree complex wavelet transform (DT-CWT) and sample entropy (SE) is proposed. Firstly, the multi-level decomposition of the noisy signal is carried out by using the dual tree complex wavelet transform. Secondly, the sample entropy of each scale detail component and the sample entropy errand of detail component in adjacent scales are calculated. Comparing the sample entropy errand, the optimal decomposition level of dual tree complex wavelet is determined. Finally, the denoising threshold of wavelet coefficients of each level is determined according to the change of sample entropy in each scale, reconstructing denoised wavelet coefficients to realize adaptive denoising. The simulation analysis and experimental results show that the method is more thorough in denoising the monitoring signal, and more complete in preserving the original information. The denoising effect is better than the traditional wavelet threshold denoising method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-06
  • 出版日期: 2022-04-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司