面向数据不平衡的卷积神经网络故障辨识方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3; TP206.3

基金项目:

国家自然科学基金面上资助项目(51675253);国家重点研发计划资助项目(2016YFF0203303?04);河南省重点研发与推广专项资助项目(222102220092)


Intelligent Fault Identification Method Based on Convolutional Neural Network for Imbalanced Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对因不同故障的样本数目不平衡造成卷积神经网络(convolutional neural network,简称CNN)对少数类样本识别准确率偏低的缺陷,采用将一种最小最大化目标函数融入卷积神经网络结构的对策,提出一种适用于故障数据不平衡的最小最大化目标函数卷积神经网络(min-max objective CNN,简称 MMOCNN)智能故障模式辨识方法。首先,利用卷积神经网络交替的卷积与池化运算自适应学习振动信号中具有表征信息的敏感特征,并通过全连接层(fully connected layer,简称FC)将学习特征映射到类空间;其次,在类空间构造特征的最小最大化目标函数;最后,将最小最大化目标函数融入到卷积神经网络的损失函数中,在模型训练过程中既考虑分类总体误差最小,同时又要求学习的样本特征保持同类距离小、异类距离大,以实现对数据不平衡故障的有效辨识。用轴承的不平衡数据集分别对本方法和传统卷积神经网络的辨识效果进行实验,结果表明,本方法能够使少数类样本的辨识精度提升20%以上。

    Abstract:

    In the health evaluation system of mechanical equipments, one of the most common situations is that the normal data is abundant and the fault data is scarce. Aiming at the defect that the convolutional neural network (CNN) has a low recognition accuracy of minority samples due to the imbalanced data, a countermeasure that incorporates a min-max objective (MMO) function into the convolutional neural network structure is adopted, and an intelligent fault identification method based on min-max objective CNN (MMOCNN) suitable for imbalanced data is proposed. Firstly, representative features learned from vibration signals by alternating convolution and pooling operations of the CNN are mapped to the class space through the fully connected layers(FC). Then, the MMO function of the features is constructed in the class space. Finally, the MMO function is integrated into the loss function of the CNN. In the model training process, the overall classification error is considered to be the smallest, and the learned sample features are required to keep the smallest intra-class distance and the largest inter-class distance to achieve effective fault identification for imbalanced data. The imbalanced bearing datasets are used to test the identification of this method and the traditional CNN. Results show that the proposed method can improve the identification accuracy of minority samples by more than 20%. Other supporting experiments additionally confirm the effectiveness of the proposed method in the case of imbalanced data.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-06
  • 出版日期: 2022-04-30
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司