基于多特征信息融合的砂岩破裂状态识别方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH39

基金项目:

国家自然科学基金资助项目(51464017);江西省教育厅科技资助项目(GJJ190452)


Identification Methods of Sandstone Fracture State Based on Multi⁃feature Information Fusion
Author:
Affiliation:

(School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology Ganzhou, 341000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对岩体在受外界应力时内部破裂状态靠经验难以准确判断的问题,提出了一种多特征信息融合和最小二乘支持向量机(least square support vector machine,简称LSSVM)的岩石破裂状态识别方法。首先,利用改进集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)对砂岩声发射信号进行分解,得到一组有效的平稳本征模函数(intrinsic mode function,简称IMF)分量,对各IMF分量进行自回归(auto regressive,简称AR)建模,提取AR模型系数作为时域特征向量;其次,通过对双谱矩阵进行奇异值分解,分析了砂岩各破碎状态声发射信号的频域特征;最后,利用局部线性嵌入(locally linear embedding,简称LLE)进行特征约简,并将融合特征向量进行归一化处理作为LSSVM的输入,砂岩破裂状态作为输出,采用粒子群算法(particle swarm optimization,简称PSO)对参数自动寻优,实现对岩石破裂状态的诊断识别。结果表明:融合特征具有较强的鲁棒性,且相对单一时域特征识别率提高了6%。

    Abstract:

    In order to solve the problem that the internal fracture state of rock mass under external stress is difficult to be judged accurately by experience, a rock fracture state recognition method based on multi-feature information fusion and least square support vector machine (LSSVM) is proposed. Firstly, the improved ensemble empirical mode decomposition(EEMD) is used to decompose the acoustic emission signal of sandstone, and a set of effective stationary intrinsic mode function(IMF)components are obtained. Moreover, the auto regressive(AR)modeling of each IMF component is carried out, and the coefficients of the AR model are extracted as the time domain eigenvector. Secondly, the frequency domain characteristics of the sandstone acoustic emission signal are analyzed by bi-spectral analysis, and the singular value decomposition of the bi-spectral matrix is carried out to calculate the singular spectrum and construct the frequency domain eigenvector. Finally, local linear embedded (LLE) are used for feature reduction, and the fusion eigenvector is normalized as the input of LSSVM, the sandstone fracture state is used as the output. Particle swarm optimization (PSO) algorithm is used to automatically optimize the parameters to realize the diagnosis and identification of rock fracture state. The results show that the fusion feature has strong robustness and the recognition rate is improved by 6% compared with the single time domain feature.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-20
  • 出版日期: 2022-06-30
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司