摘要:针对岩体在受外界应力时内部破裂状态靠经验难以准确判断的问题,提出了一种多特征信息融合和最小二乘支持向量机(least square support vector machine,简称LSSVM)的岩石破裂状态识别方法。首先,利用改进集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)对砂岩声发射信号进行分解,得到一组有效的平稳本征模函数(intrinsic mode function,简称IMF)分量,对各IMF分量进行自回归(auto regressive,简称AR)建模,提取AR模型系数作为时域特征向量;其次,通过对双谱矩阵进行奇异值分解,分析了砂岩各破碎状态声发射信号的频域特征;最后,利用局部线性嵌入(locally linear embedding,简称LLE)进行特征约简,并将融合特征向量进行归一化处理作为LSSVM的输入,砂岩破裂状态作为输出,采用粒子群算法(particle swarm optimization,简称PSO)对参数自动寻优,实现对岩石破裂状态的诊断识别。结果表明:融合特征具有较强的鲁棒性,且相对单一时域特征识别率提高了6%。