摘要:针对强噪声背景下行星齿轮箱早期微弱故障难以提取以及经验小波变换对信号频率区间边界划分不恰当以及不能有效确定模态数目的问题,提出了一种基于改进经验小波变换(modified empirical wavelet transform, 简称MEWT)和自适应稀疏编码收缩(adaptive sparse coding shrinkage,简称ASCS)的早期微弱故障特征提取方法。根据信号频谱的尺度空间表示,将原始故障信号自适应地分解为一系列的窄频带本征模态分量。利用包络谱峭度(envelope spectrum kurtosis, 简称ESK)值选择敏感分量,为了进一步凸显分量中的故障信息,使用ASCS算法对敏感分量进行稀疏降噪处理,从其包络谱中即可提取到清晰的故障特征频率成分。数值仿真和实际数据分析结果表明,本研究方法能够自适应地实现故障信号的模态分解并增强微弱的故障冲击特征。此外,与经验小波变换(empirical wavelet transform, 简称EWT),EWT?ASCS和ASCS进行对比,本研究方法可有效提取包含故障信息丰富的分量,经ASCS处理后信号故障特征得到凸显,实现了行星齿轮箱早期微弱故障的准确识别。