基于Kernel‑MCCA特征融合的齿轮故障诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17; TP18

基金项目:

国家自然科学基金资助项目(51775409)


Gear Fault Diagnosis Method Based on Kernel‑MCCA Feature Fusion
Author:
Affiliation:

(School of Mechanical Engineering, Xi'an Jiaotong University Xi'an, 710049, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对转速波动工况下齿轮故障难以辨识的问题,提出了一种基于核函数的多重集典型相关分析方法(kernel?multiset canonical correlation analysis,简称Kernel?MCCA),实现基于多传感信息的特征层融合,并将其应用到转速波动工况下的齿轮断齿、点蚀、磨损以及剥落故障的辨识。首先,将多传感器采集的振动信号进行小波包分解,计算能量特征矩阵;其次,利用多重集典型相关分析进行特征层融合,构建的融合特征输入到K近邻(K?nearest neighbor,简称KNN)分类器中并输出诊断结果;最后,利用齿轮振动实验台进行实验研究。结果表明,笔者所提的特征融合方法比单传感器方法识别准确率提高了5%左右,比传统的多重典型相关分析特征融合方法识别准确率提高了2%左右,可有效解决转速波动下齿轮故障状态辨识问题。

    Abstract:

    Under speed fluctuation conditions, the characteristics of gear vibration signals captured by a single vibration acceleration sensor will be weakened due to the increase in the amount of interference such as random noise, resulting in a decrease in the accuracy of fault identification based on the information of a single sensor. Aiming at this problem, this paper proposes a kernel multiset canonical correlation analysis method based on kernel theory, which realizes the fusion of feature layers based on multi-sensor information and is applied to identificate broken gear, pitting, wear and peeling failure at fluctuated rotational speed conditions. This method decomposes the vibration signals collected by multiple sensors by wavelet packet decomposition, calculates the energy feature matrix, and then uses the multi-set canonical correlation analysis to perform feature layer fusion. The fusion features are input to a K-nearest neighbor (KNN) classifier. Experiments on a gear vibration test bench show that the feature fusion method proposed in this paper improves the recognition accuracy by 5% compared with the single-sensor method, and improves the recognition accuracy by 2%, which can effectively solve the problem of gear fault identification under speed fluctuation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-20
  • 出版日期: 2022-06-30
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司