摘要:针对转速波动工况下齿轮故障难以辨识的问题,提出了一种基于核函数的多重集典型相关分析方法(kernel?multiset canonical correlation analysis,简称Kernel?MCCA),实现基于多传感信息的特征层融合,并将其应用到转速波动工况下的齿轮断齿、点蚀、磨损以及剥落故障的辨识。首先,将多传感器采集的振动信号进行小波包分解,计算能量特征矩阵;其次,利用多重集典型相关分析进行特征层融合,构建的融合特征输入到K近邻(K?nearest neighbor,简称KNN)分类器中并输出诊断结果;最后,利用齿轮振动实验台进行实验研究。结果表明,笔者所提的特征融合方法比单传感器方法识别准确率提高了5%左右,比传统的多重典型相关分析特征融合方法识别准确率提高了2%左右,可有效解决转速波动下齿轮故障状态辨识问题。