基于稀疏表示以及图谱理论的故障诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133

基金项目:

国家自然科学基金资助项目(51975487);轨道交通运维技术与装备四川省重点实验室开放基金资助项目(2020YW003,2019 YW003);成都工业学院引进人才科研启动项目(2021RC003)


Fault Diagnosis Method Based on Sparse Representation and Graph Fourier Transform
Author:
Affiliation:

(1. School of Automobile and Transportation, Chengdu Technological University Chengdu, 644000, China)(2. School of Mechanical Engineering, Southwest Jiaotong University Chengdu, 610031, China)(3. Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province Chengdu, 610031, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对图傅里叶变换(graph Fourier transform,简称GFT)方法在提取轮对轴承故障特征信号的过程中,将信号中包含的部分噪声成分提取出来,从而对故障诊断结果产生影响这一问题,提出了一种基于稀疏表示以及图谱理论相结合的轮对轴承故障诊断方法。首先,根据具有局部损伤的滚动轴承振动信号特点构造合适的过完备字典库;其次,采用正交匹配追踪法求解系数实现对振动信号的稀疏表示;最后,通过图傅里叶变换方法将信号中含有的冲击分量集中到图谱域的高阶区域,从而对轮对轴承故障进行诊断。通过仿真数据以及试验数据处理结果,对提出方法的有效性进行了验证。

    Abstract:

    In the process of extracting the fault characteristic signal of wheelset bearing using graph Fourier transform (GFT) method, the noise components contained in the signal will be extracted together, which will affect the fault diagnosis. To solve this problem, a fault diagnosis method of wheelset bearing based on sparse representation and spectrum theory is proposed. Firstly, using sparse representation method to restructure wheelset bearing vibration signal with local damage. Then, using the GFT method to process these signals, the impulse components contained in the signal are concentrated in the higher order region of the GFT graph spectrum. Through analysis those impulse components, bearing fault can be detected. The validity of the proposed method is proved by the results which get using this method to process the simulation data and the bench test data.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-20
  • 出版日期: 2022-06-30
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司