基于卷积GRU注意力的设备剩余寿命预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133;TH17

基金项目:

国家自然科学基金资助项目(11972236,11790282);石家庄铁道大学研究生创新基金资助项目(YC2021077)


Remaining Useful Life Prediction Based on ConvGRU‑Attention Method
Author:
Affiliation:

(1. School of Information Science and Technology, Shijiazhuang Tiedao University Shijiazhuang, 050043, China)(2. State Key Laboratory of Mechanical Behavior in Traffic Engineering Structure and System Safety, Shijiazhuang Tiedao University Shijiazhuang, 050043, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了直接利用神经网络从采集的全寿命振动信号中自动提取特征信息,避免对人工提取特征的依赖,提出了一种基于卷积门控循环单元(convolutional gated recurrent unit,简称ConvGRU)注意力的剩余寿命预测方法。首先,对于采集的设备振动信号预处理,输入ConvGRU注意力模型,ConvGRU通过卷积神经网络(convolutional neural networks,简称CNN)提取设备状态的空间局部特征,门控循环神经单元(gate recurrent unit,简称GRU)提取时序特征信息,从而有效提取设备状态特征;其次,利用注意力机制对特征信息分配不同的权重;然后,进行中间网络层特征输出的可视化实验,验证了本研究方法特征提取的有效性;最后,进行了2个机械设备数据集PHM2012轴承数据集和NASA发动机数据集的实验,并与已有方法进行对比。实验结果表明,笔者提出的基于ConvGRU注意力的剩余寿命预测方法预测准确性更好,并具有较好的泛化性。

    Abstract:

    In order to directly use neural network to automatically extract feature information from the collected full-life vibration signals and avoid the dependence on manually extracted features, a remaining useful life prediction method based on convolution gated recurrent unit (ConvGRU) attention is proposed. Firstly, the collected equipment vibration signal is input into ConvGRU-attention model after preprocessing. ConvGRU extracts the spatial local features of equipment state through convolutional neural networks(CNN) and gate recurrent unit (GRU) extracts the timing feature information, so that the equipment state features can be extracted more effectively. Secondly, the attention mechanism is used to assign different weights to the feature information. Then, the visualization experiment of the feature output of the intermediate network layer is carried out, which verifies the effectiveness of the feature extraction of this research method. Finally, experiments are carried out on two mechanical equipment datasets PHM2012 bearing dataset and NASA engine dataset, and compared with existing methods. The experimental results show that the prediction accuracy of the remaining useful life prediction method based on ConvGRU-attention is better and has better generalization.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-20
  • 出版日期: 2022-06-30
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司