埋地管道光纤周界振动监测与预警技术
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH82; TU990.3

基金项目:

国家自然科学基金资助项目(51878509)


Perimeter Monitoring and Early Warning Technology for Buried Pipeline Based on Vibration Fiber Optic
Author:
Affiliation:

(College of Civil Engineering, Tongji University Shanghai, 200092, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对管道第三方活动进行振动监测和预警可以显著提高管道安全性。遵循“数据采集?样本分割?特征提取?识别模型训练?识别策略”框架,建立了基于随机森林算法的埋地管道光纤周界振动监测系统。通过长度为5.35 km的相位敏感光时域反射计(phase?sensitive optical time?domain reflectometer,简称φ?OTDR)光纤传感系统,采集了鹤嘴锄、铲子、锤子和电锤4种典型周界入侵活动的振动信号和85 h时长的环境振动信号。依据信号对比分析结果,选择合理的样本分割尺度和特征提取方法,并训练随机森林识别模型。提出了时空矩阵识别策略用于识别模型的结果修正,减少了99.59%的系统误报。在测试中,光纤周界振动监测系统的识别率为94.87%,误报率仅为0.013 9%,这说明该系统能够抵抗城市中常见的环境振动干扰。

    Abstract:

    The detection of third-party activities near pipes based on vibration signals can effectively enhance pipeline safety. In the framework of “data collection-sample segmentation-feature extraction-recognition model training-recognition strategy”, a random forest pipeline perimeter monitoring system by vibration optical fiber is proposed . The vibration signals of pickaxe, spade, hammer and electric hammer are collected by 5.35 km φ-OTDR optical fiber, and the 85 h environmental signals are also collected for comparison. The methods of sample segmentation and feature extraction are established to train a random forest model. A strategy of space-time matrix is proposed for correcting the model result, which will reduce the false alarm by 99.59%. In the test, the recognition rate of the perimeter monitoring system is 94.87%, while the false alarm rate is only 0.013 9%, which indicates that the system performs well under common urban environmental vibrations.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-20
  • 出版日期: 2022-06-30
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司