摘要:针对单一时频域指标不能完全诠释滚动轴承全寿命周期退化特性以及剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出了基于均方谐噪比(mean square harmonic noise ratio,简称MSHNR)指标和改进正则化粒子滤波(regularized particle filter, 简称RPF)相结合的剩余寿命预测方法。首先,在局部均值进行信号分解的基础上,通过MSHNR指标实现轴承退化过程的特征提取;其次,分别基于Paris模型及Foreman模型构建滚动轴承稳定退化期和加速退化期的状态空间模型,并利用基于欧式距离的核函数实现重采样过程的改进,实现轴承健康状态评估和剩余寿命预测;最后,通过公开的滚动轴承加速数据验证了所述方法的有效性。相关研究成果能够为核动力旋转设备中滚动轴承的预测性维护提供参考依据,提高公众对核动力旋转设备运行的认识与信赖。