剩余寿命预测新方法及其在滚动轴承中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH165.3;TH17

基金项目:

中国核工业集团公司“青年英才计划”资助项目;哈尔滨工程大学研究课题资助项目(KY90200210007)


Remaining Useful Life Prediction and Its Application in Rolling Bearing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对单一时频域指标不能完全诠释滚动轴承全寿命周期退化特性以及剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出了基于均方谐噪比(mean square harmonic noise ratio,简称MSHNR)指标和改进正则化粒子滤波(regularized particle filter, 简称RPF)相结合的剩余寿命预测方法。首先,在局部均值进行信号分解的基础上,通过MSHNR指标实现轴承退化过程的特征提取;其次,分别基于Paris模型及Foreman模型构建滚动轴承稳定退化期和加速退化期的状态空间模型,并利用基于欧式距离的核函数实现重采样过程的改进,实现轴承健康状态评估和剩余寿命预测;最后,通过公开的滚动轴承加速数据验证了所述方法的有效性。相关研究成果能够为核动力旋转设备中滚动轴承的预测性维护提供参考依据,提高公众对核动力旋转设备运行的认识与信赖。

    Abstract:

    Aiming at the problem that a single time-frequency domain index cannot fully interpret the degradation characteristics of rolling bearing life cycle and it is difficult to predict the remaining useful life(RUL), a RUL prediction method is proposed combining mean square harmonic noise ratio (MSHNR) and regularized particle filter (RPF). Firstly, the feature extraction of the whole bearing degradation process is realized based on MSHNR. Then, the state space models of rolling bearings at different degradation stages are established based on Paris model and Foreman model. Aiming at the problem that particle filter is easy to exhaust particles and weaken diversity during resamping,the resamping process of regularized particle filter (RPF) is improved by using Euclide-based kernel function, so as to track the degradation state. Finally, the effectiveness of the proposed method is verified by the accelerated life test data set of rolling bearings. Relevant research results can provide reference for predictive maintenance of rolling bearings in nuclear power rotating equipment, and improve the public's understanding and trust in the operation of nuclear power rotating equipment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-27
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司