风电机组传动链动态载荷识别算法及验证
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113.1

基金项目:

政府间国际科技创新合作重点专项资助项目(2017YFE0101900);国家自然科学基金资助项目(11262011)


Dynamic Load Identification Algorithm and Verification of Wind Turbine Drive Train
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以某大型双馈风电机组为研究对象, 建立传动链动态载荷特性模型,提出传动链扭转振动和发电机转矩特性相结合的低速轴扭动载荷识别算法。开展多体动力学刚柔耦合模型仿真计算,验证振动特性和动态辨识载荷。结果表明,动态辨识载荷与仿真结果吻合度较高,额定风速以上其平均值偏差约为2%,1 Hz等效疲劳载荷偏差约为6%。样机测试验证结果表明,动态辨识载荷与实测结果具有较高吻合度,等效疲劳载荷偏差在5%以内,满足工程要求。本研究的传动链动态载荷识别方法,引入低通滤波算法,进行自主编程,只需机组自有检测和运行数据,并可获取机组运行过程中的低速轴扭转载荷,为机组安全监控提供有利支撑。

    Abstract:

    A large doubly-fed wind turbine is taken as the research object and the dynamic load characteristics of the drive train are modeled. Moreover, the identification algorithm of low-speed shaft torsion load of the transmission chain based on the combination of torsional vibration and generator torque characteristics is proposed as well. Applying the multi-body dynamics rigid-flexible coupling model in the simulation aims to verify the vibration characteristics of the transmission chain and dynamically identify the load. The simulation results are aligned with the dynamic identification of the load in a relatively high degree. The average deviation above the rated wind speed is about 2%, and the deviation of the 1 Hz equivalent fatigue load is around 6%. Furthermore, through the prototype test, the test results are close to the dynamic identified load and the deviation of the equivalent fatigue load is below 5%, which meets the engineering requirements. The drive train dynamic load identification method, using low-pass filtering algorithm, can achieve auto-programming which only needs the wind turbine self-detection and operational data, and can also obtain the low-speed axial torsion load during the operation of the wind turbine, which provides favorable support for the wind turbine security monitoring.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-27
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司