摘要:针对条件深度卷积生成式对抗网络(conditional deep convolutional generative adversarial network ,简称C-DCGAN)在训练过程中出现的不稳定性问题,提出具有随机梯度下降的双时间尺度更新规则(two time-scale update rule,简称TTUR)用于C-DCGAN机械故障诊断模型训练中,在判别器和生成器具有单独学习速率的情况下提高模型的稳定性。首先,给出了TTUR在C?DCGAN模型中收敛性证明;其次,在西储大学轴承数据集(Case Western Reserve University,简称CWUR)和实验室行星齿轮箱数据集上验证其有效性;最后,引入Jensen-Shannon 散度(Jensen-Shannon divergence,简称JSD)指标评估模型捕获到的真实数据和生成数据之间的相似度。实验结果表明,TTUR提高了C-DCGAN的学习能力,优于传统的C-DCGAN。