基于深度学习的工业装备PHM研究综述
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家自然科学基金重点资助项目(71731008)


Deep Learning Based Industrial Equipment Prognostics and Health Management: a Review
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着物联网和通信技术的快速发展,现代工业装备海量运行数据被实时监测传输,推动装备服役阶段的故障预测与健康管理进入大数据时代。面对具有不确定性强、价值密度低及多源异构特点的装备运行大数据,传统浅层模型算法存在难以自主挖掘数据蕴含特征、对装备健康状态表征能力弱的先天不足。近年来,作为机器学习领域的研究热点,深度学习理论得到了学术界与工业界的广泛关注,相关的工业装备故障预测与健康管理(prognostics and health management, 简称PHM)研究与应用层出不穷,为解决大数据背景下的故障预测与健康管理难题提供了新的思路和技术手段。为此,笔者回顾了工业装备故障预测与健康管理技术发展历程;从异常检测、故障诊断以及故障预测3个方面综述了深度学习已取得的研究成果;讨论了深度学习在当下工业装备故障预测与健康管理中的热点话题;分析了该研究方向在工程实际中面临的挑战,并探讨应对这些挑战的有效措施和未来发展趋势。

    Abstract:

    With the rapid development of the internet of things and communication technology, a large amount of real-time operation data in modern industrial equipment are monitored, promoting the equipment prognostics and health management into the era of big data. Facing the challenge of the uncertainty, low value density, multi-source heterogeneous characteristics of the monitoring data, it is difficult to adaptively capture the weak fault characteristics contained in the data. In recent years, as a research hotspot in the field of machine learning, deep learning theory has received widespread attention from academia and industry, and the related researches and applications on industrial equipment prognostics and health management (PHM) have emerged, injecting fresh blood to this field. To this end, this paper reviews the development of industrial equipment prognostics and health management technology; and reviews the research results achieved by deep learning from three aspects: anomaly detection, fault diagnosis and fault prediction; discusses the hot topics of deep learning in the current industrial equipment prognostics and health management; analyses the challenges faced in engineering practice, and discusses the effective measures to cope with these challenges.Finally, the future development trends to address these challenges are discussed.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-01
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司