基于神经网络和子空间的非线性系统载荷识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113.1;O322

基金项目:

国家自然科学基金资助项目(11802201,11972245);航空科学基金资助项目(2020Z009048001);天津市自然科学基金资助项目(21JCQNJC00360);天津市青年人才托举工程资助项目(TJSQNTJ-2020-01)


Force Identification for Nonlinear Systems Based on Neural Network and Subspace Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于非线性描述函数选定困难,在不同激励水平下会导致时域非线性子空间辨识过程重复繁琐。针对此问题,基于不同激励水平下时域非线性子空间方法重构的非线性恢复力数据和测量的非线性位置响应数据训练神经网络模型,等效代替响应?非线性恢复力映射关系,使得辨识过程不再依赖系统模型,只需已知非线性位置的响应即可获取非线性恢复力,计算效率得以提高。针对非线性系统外载荷难以测量的问题,利用响应?非线性恢复力映射关系的神经网络模型预测非线性恢复力,进一步提出基于神经网络和子空间法的载荷识别方法,并通过间隙非线性结构的数值与实验研究验证了所提载荷识别方法的有效性和可行性。

    Abstract:

    The identification process based on time-domain nonlinear subspace is cumbersome under different excitation level tests due to the difficulty in selecting the nonlinear description functions. Nonlinear restoring force data reconstructed by time domain nonlinear subspace method and nonlinear response data measured at the nonlinear position under different excitation levels are used to train the neural network model, which is then used to equivalently represent the response-nonlinear restoring force mapping relationship. As a result, the identification process is no longer dependent on the system models. In other words, the nonlinear restoring force can be obtained as long as the response at the nonlinear position is measured, which significantly improves the computational efficiency. Furthermore, a force identification method based on neural network and subspace method is proposed to deal with the problem that the external force of nonlinear system is difficult to measure. The effectiveness and feasibility of the proposed force identification method are verified via numerical and experimental studies of systems with clearance nonlinearity.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-01
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司