摘要:为了更精确辨识多面转子轴系的失衡参数,采用适用于复杂非线性求解问题的粒子群优化算法替代失衡参数辨识反问题求解过程。在使用粒子群优化求解时,引入混沌优化思想,分别对权重因子和迭代规律进行调整,提出了混沌权重粒子群优化(chaos weighted particle swarm optimization, 简称CWPSO)和双混沌粒子群优化(double chaos particle swarm optimization, 简称DCPSO),并与标准粒子群优化(standard particle swarm optimization, 简称SPSO)和异步自适应粒子群优化(asynchronous adaptive particle swarm optimization, 简称ASPSO)进行了仿真对比,结果显示,DCPSO的平均误差最小为2.86%,稳定性最佳。采用DCPSO在本特利RK4实验台上进行失衡参数辨识及振动抑制实验,结果表明,在转速为2 040 r/min时,该算法对多面转子轴系失衡参数辨识效果最佳,由失衡引起的振动抑制率达95%左右。