依据主成分和协整性的大坝变形奇异诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TV698.1

基金项目:

国家自然科学基金资助项目(52109155);水文水资源与水利工程科学国家重点实验室“一带一路”水与可持续发展科技基金资助项目(2019492211);华北水利水电大学高层次人才启动资助项目(202005002,202005017);黄河水利科学研究院基本科研业务费专项资助项目(HKY-JBYW-2021-10)


Singularity Diagnosis Method for Deformation Monitoring Data of Dams According to Principal Component and Co⁃integration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对常规方法对大坝变形原位监测数据中奇异成分的诊断效率较低问题,综合应用主成分分析(principal component analysis,简称PCA)和协整分析(co-integration analysis,简称CA),提出一种新方法。首先,基于PCA,构建平方预测误差(squared prediction error,简称SPE)统计量,结合假设检验,提出奇异成分辨识准则;其次,依据CA,运用拓展的迪基?福勒(augmented Dickey?Fuller,简称ADF)检验和逐步回归法,建立奇异成分似然估计模型;最后,通过工程实例分析,检验方法的有效性。结果表明:PCA、拉依达、狄克松和t准则分别可辨识出相对误差为3.81%,7.61%,7.61%和5.08%的孤立型奇异;CA模型对斑点型奇异的估计精度最高,其次是统计模型,自回归模型最差,复相关系数分别为0.994 5,0.871 5和0.743 2。与常规方法相比,PCA-CA方法性能有较大提升,可为大坝变形奇异诊断提供有效的途径。

    Abstract:

    For the singularity diagnosis of deformation monitoring data of dams, conventional theories have low efficiency. In view of this situation, a new singularity diagnosis method is developed based on the principal component analysis (PCA) and co-integration analysis (CA). Firstly, the squared prediction error (SPE) statistics are constructed according to PCA. The identification criteria of singular components are established by applying the hypothesis test principle. Secondly, the CA model is established and the estimation method of singular component is proposed by comprehensively using the augmented Dickey-Fuller (ADF) test and stepwise regression method. Finally, the validity of the proposed method is verified after analyzing engineering examples. Application scenarios show that: PCA criteria, Laida criteria, Dixon criteria and t criteria can identify isolated singular components with relative errors of 3.81%, 7.61%, 7.61% and 5.08%, respectively. The CA model has the highest accuracy in estimating the speckled singular components, followed by the statistical model and the autoregressive model. The multiple correlation coefficients are 0.994 5, 0.871 5, and 0.743 2, respectively. Compared with conventional methods, performances of the proposed PCA-CA methodology are improved, which provides an effective way for the singularity diagnosis of in-situ deformation monitoring data.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-01
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司