基于RS和AHNs的轮毂电机故障模糊诊断法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17;U26

基金项目:

国家自然科学基金面上资助项目(51775245)


A Fuzzy Diagnosis Method Based on RS and AHNs for Faults of In⁃Wheel Motor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效监测电动汽车轮毂电机在复杂工况下的运行状态,保证其运行安全,提出了一种基于粗糙集(rough set,简称RS)理论和人工碳氢网络(artificial hydrocarbon networks, 简称AHNs)的轮毂电机故障模糊诊断方法。首先,以轮毂电机运行安全为目标,重点考虑转速和负载转矩对振动信号的影响程度,用特征参数表征轮毂电机运行状态,并基于RS理论提出一种特征参数的离散化方法,对输入层进行了模糊化处理;其次,基于分子间能量优化AHNs算法,建立初步诊断模型,并考虑不同输出状态类型的模糊性,利用模糊理论建立AHNs多输出的隶属度函数,构建轮毂电机故障模糊诊断模型,实现了对复杂工况下轮毂电机故障的诊断;最后,通过轮毂电机机械故障台架试验验证了该方法的有效性。

    Abstract:

    In order to effectively monitor some faults of in-wheel motor used in electric vehicle and ensure its operation safety, a fuzzy diagnosis method based on rough set (RS) theory and artificial hydrocarbon networks (AHNs) is proposed for detecting faults of in-wheel motor. Aiming at the operation safety of in-wheel motor, vibration signal was analyzed under the influence of the rotating speed and load torque to refine some symptom parameters (SPs) for characterizing the operation state of in-wheel motor. RS theory is used for proposing a discretization method of SPs with the fuzzy processing of the input layer. AHNs is employed to build a classifier, and its intermolecular energy is considered to optimize AHNs algorithm. Then, fuzzy theory is used for establishing the membership functions of the AHNs multi-outputs, so as to build a fuzzy diagnosis model for realizing the fault diagnosis of the in-wheel motor under complex working conditions. Finally, the effectiveness of the proposed method is verified by in-wheel motor bench test.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-01
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司