基于深度学习的航空发动机齿轮故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V240.2;V232

基金项目:

国家自然科学基金资助项目(51705455);航空科学基金资助项目(20183333001);中国博士后基金特别资助项目(2018T110587)


Fault Diagnosis of Aeroengine Gear Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的机械故障诊断方法需要将采集的故障波信号进行信号处理,再结合神经网络进行特征提取与分类,不仅流程复杂、耗费时间,而且识别准确率不高。针对此问题,采用一维卷积神经网络(one dimensional convolutional neural network,简称1D?CNN)对试验获取的某航空发动机的齿轮故障振动数据进行特征提取与分类,建立齿轮故障一维卷积神经网络模型,对航空发动机轴承进行故障诊断。试验与分析结果表明:采用该神经网络模型对齿轮进行分类,其准确率可达80%,相较于采用传统的前馈神经网络63.9%的识别准确率,提高了15.07%;与采用支持向量机(support vector machine ,简称SVM)对故障进行分类识别相比,该方法准确率提高了15.89%。本方法能够直接将波形振动信号作为输入,通过卷积、池化等一系列操作,输出最后的分类结果,简化了传统方法先进行信号处理再通过机器学习诊断的步骤,为航空发动机故障诊断提供一种可行方法。

    Abstract:

    Traditional mechanical fault diagnosis methods often need to handle the collected fault wave signals, and then combine neural network to extract and classify the features. It is not only complex in process, time consuming, but also low in recognition accuracy. Therefore, this paper uses one-dimensional convolutional neural network (1D-CNN) to extract and classify the experimental vibration data of gear fault of an aeroengine, for establishing the 1D-CNN model of gear fault and diagnosing the bearing fault. From the test and analysis results, the accuracy of gear classification by using the neural network model is up to 80%, which is 15.07% higher than that of 63.9% of the traditional back propagation neural network, and the accuracy of this method is improved by 15.89% compared with the classification by support vector machine (SVM). This method can directly use the wave vibration signal as input, and output the final classification results through a series of operations such as convolution and pooling. It simplifies the traditional tedious steps of signal processing and machine learning diagnosis, which provides a feasible method for aeroengine fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-28
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司