应用时频图像纹理特征的行星齿轮故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH132.425

基金项目:

国家自然科学基金资助项目(51175480);山西省重点研发计划(国际合作)资助项目(201903D421008);中北大学先进制造技术山西省重点实验室开放基金资助项目(XJZZ202007)


Fault Diagnosis of Planetary Gear Used Time‑Frequency Image Texture Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行星齿轮箱结构复杂,当发生故障时其振动信号呈非线性非平稳特点且故障信号微弱,为了能够准确提取行星齿轮磨损故障信息的特征,提出局部均值分解(local mean decomposition,简称LMD)结合S变换(LMD?S)的信号处理方法,且转化为时频分布图像,应用时频图像纹理特征进行行星齿轮故障诊断。首先,把振动信号经由LMD?S变换处理后利用相关分析方法滤除干扰且转化为时频分布图像;其次,利用非均匀局部二值模式(local binary patterns,简称LBP)提取不同工况下采集数据的图像纹理特征;最后,采用极限学习机识别出3种故障类型,故障识别准确率达到90%,证明了此方法的有效性。

    Abstract:

    The structure of the planetary gearbox is very complicated. When a fault occurs, its vibration signal appears non-linear and non-stationary feature, and the fault signal is weak. In order to accurately extract features expressing planetary gear failure information, the signal processing method of local mean decomposition (LMD) combined with S-transform is proposed, and transform it into time-frequency distribution image. First, the vibration signal is processed by LMD-S transform, then the interference is filtered by correlation analysis method and transformed into time-frequency distributed image. Subsequently, the non-uniform local binary pattern (LBP) is used to extract image texture features under different working conditions. Finally, the limited learning machine is used to identify three fault types. The accuracy of fault recognition reaches 90%, which proves the effectiveness of this method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-28
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司