基于AIF和TT的滚动轴承复合故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家自然科学基金资助项目(51777074);北华航天工业学院博士科研基金资助项目(BKY?2020?015);廊坊市科学技术研究与发展计划资助项目(2020011047)


Compound Fault Diagnosis of Rolling Bearings Based on AIF and Improved Time‑Time Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滚动轴承复合故障模式下的微弱特征难以提取的问题,提出了基于自适应迭代滤波(adaptive iterative filtering,简称AIF)和改进的时时变换(time?time transform,简称TT)的滚动轴承复合故障诊断方法。首先,采用AIF将信号分解,得到一系列本征模态分量,并以最大相关峭度作为评价准则,筛选出其中的特征分量,实现滚动轴承复合故障振动信号的特征分离;其次,利用改进的时时变换方法对特征分量进行降噪,增强特征分量的冲击特征;最后,对降噪的特征分量进行包络谱分析,提取故障特征频率,实现滚动轴承故障模式的精确判别。仿真实验和故障诊断实例表明,该方法可以有效提取滚动轴承复合故障模式下的微弱特性信息。

    Abstract:

    For the problem that the weak features of rolling bearing compound failure mode are difficult to extract, a method for rolling bearing compound fault diagnosis based on adaptive iterative filtering (AIF) and improved time-time (TT) transform is proposed. First, AIF method is applied to decompose the fault vibration signal to achieve a series of intrinsic mode functions and the maximum correlated kurtosis criterion is adopted to select the characteristic components. Then, the improved TT transform method is used to denoise the characteristic components to reinforce the impact features. Finally, the denoised characteristic components are performed on envelope analysis to extract the fault characteristic frequencies and complete the identification of rolling bearing fault mode. The simulated test and actual fault diagnosis instance show that the method proposed in this article can effectively identify the weak fault feature message of the fault signals.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-28
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司