基于深度学习LSTM⁃DBN的水轮机振动故障预测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17;TV73

基金项目:

国家自然科学基金资助项目(52277216)


Vibration Fault Prediction Method of Hydraulic Turbine System Based on Deep Learning LSTM‑DBN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习算法具有强大的时间序列预测能力以及可实时处理大数据海量样本的优势。针对水轮机系统振动故障诊断存在精度低、漏诊及难预测等问题,提出了一种基于深度学习长短时记忆(long short time memory, 简称LSTM)网络结合深度置信网络(deep belief networks,简称DBN)的水轮机系统故障预测方法。将小波包能量带与时频域指标信息相结合,提取高维故障统计特征,利用DBN深层网络的自适应特征提取能力对原始故障数据进行高维特征表示,准确地判断故障种类,并凭借LSTM对时序信号强大的预测能力,预测出未来系统可能发生的振动故障。工程实验验证了该算法的有效性。

    Abstract:

    Deep learning algorithms have attracted attention due to their powerful time series forecasting capabilities and the advantages of being able to process massive samples of massive data in real time. Aiming at the problems of low accuracy, missing diagnosis, and difficult prediction in the vibration fault diagnosis of hydraulic turbine systems, a hydraulic turbine system fault prediction method based on deep learning long short time memory (LSTM) networks combined with deep belief networks (DBN) is proposed. This method combines wavelet packet energy bands with time-frequency domain index information to extract high-dimensional fault statistical features, and uses the adaptive feature extraction capabilities of the DBN deep network to perform high-dimensional feature representations on the original fault data, to more accurately determine the types of faults, and to predict the possible vibration faults of the system in the future with the powerful predictive ability of LSTM on time series signals. The effectiveness of the algorithm is verified by engineering experiments.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-28
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司