基于一维CNN迁移学习的滚动轴承故障诊断
作者:
作者单位:

作者简介:

通讯作者:

邓林峰,男,1984年2月生,博士、副教授,硕士生导师。主要研究方向为机械动态测试与故障诊断、机电信息智能处理与机器学习。 E-mail:denglinfeng2002@163.com

中图分类号:

TH165.3;TP183

基金项目:

国家自然科学基金资助项目(51675253);中国博士后科学基金资助项目(2016M592857)


Fault Diagnosis of Rolling Bearings Based on One‑Dimensional Convolutional Neural Network with Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于在工程实际中采集的故障振动数据分布不同且难以标记,使得卷积神经网络(convolutional neural network, 简称CNN)在故障诊断过程中难以发挥最佳作用。针对此问题,提出了一种基于一维卷积神经网络迁移学习的滚动轴承故障诊断方法。首先,建立了可直接处理轴承振动信号的一维卷积神经网络模型并使用源域数据对其进行预训练;其次,利用最大均值差异(maximum mean discrepancy, 简称MMD)度量源域和目标域在预训练模型中各层上的特征分布距离,并通过MMD判断卷积层和全连接层能否迁移,若不能迁移则使用初始化方式补全模型;最后,使用少量标记的目标域数据再次训练模型,进而对目标域故障数据进行分类辨识。利用故障轴承数据对方法有效性进行验证,结果显示,该方法在目标域只有少量标签的情况下能够实现变工况滚动轴承故障分类,并达到较高的诊断准确率。

    Abstract:

    Fault diagnosis of rolling bearings using convolutional neural network (CNN) has great significance for maintaining the performance and guaranteeing the healthy operation of the rotating machinery. However, some deficiencies exist in fault diagnosis based on convolutional neural network, because the sampled actual vibration data are often differently distributed and difficult to label. In order to solve this problem, a fault diagnosis method of rolling bearing based on one-dimensional convolutional neural network with transfer learning is proposed. Firstly, a one-dimensional convolutional neural network model which can directly process vibration signals is established and pre-trained with the data in source domain. Then, maximum mean discrepancy (MMD) is used to measure the feature distribution distance between the source domain and the target domain in each layer of the pre-training model and determine whether the convolutional layers and fully-connected layers can be transferred, and after that the model is restructured through the initialization strategy. Finally, a small number of labeled data in target domain are used to train the model again, and then the fault data in target domain are classified. The effectiveness of the proposed method is verified by processing the bearing fault data, and the obtained results show that the proposed method can realize the accurate fault classification of rolling bearings under variable operation conditions while there are only a few labeled data in the target domain.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-24
  • 最后修改日期:2021-01-27
  • 录用日期:
  • 在线发布日期: 2023-03-09
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司