基于遗传算法的直驱SCARA机器人臂长优化设计
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH12

基金项目:

国家重点研发计划资助项目(2022YFB4701004)


Optimal Design of Arm Length of Direct Driven SCARA Robot Based on Genetic Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于选择顺应性装配机器手臂(selective compliance assembly robot arm,简称SCARA)机器人关节驱动链过长,无法满足电子芯片等制造行业高速、高精度的要求,因此提出了一种直驱SCARA机器人, 其特点是结构简单、消除了中间传动环节,代替了传统的伺服电机加减速器驱动的方式。同时,针对直驱关节转矩脉动较大、影响机器人端部稳定性的问题,提出了一种优化和设计思路,对于机器人的整体结构和参数进行了优化。在确定了SCARA机器人最大运动范围之后,分别建立了速度评价函数和刚度评价函数,以速度、刚度性能函数为适应性函数,采用多目标遗传算法对臂长进行优化。臂长优化前后的实验对比显示,优化前关节联合速度最大为3.9 m/s,优化后关节联合速度最大为4.6 m/s,有较大的提升。通过仿真发现:在末端载荷相同的情况下,优化后的形变量更小;优化前重复定位精度为±0.010 5 mm,较之传统SCARA机器人的重复定位精度已有一定提升,优化后重复定位精度进一步提高为±0.009 mm。仿真与实验结果证明,遗传算法优化有效解决了SCARA机器人端部稳定性问题,能明显提升机器人关节运动速度。

    Abstract:

    Current selective compliance assembly robot arm (SCARA) robots cannot meet the requirements for high speed and high precision in electronic chip manufacturing and other industries due to its long joint driving chain. For this problem, a novel SCARA robot is proposed, which adopts a direct drive mode rather than the traditional servo motor add reducer driving mode. Its structure is very simple because the intermediate transmission links are removed. Meanwhile, an optimal design method for optimizing the robot structural parameters is proposed to solve the stability problem of the robot end caused by the large torque ripple of the direct-driven joint. After the maximum motion range of SCARA robot is determined, the velocity evaluation function and the stiffness evaluation function are constructed respectively, which are taken as the adaptive functions to optimize the arm length by a multi-objective genetic algorithm. The experimental comparison before and after the arm length optimization shows that, the joint speed is up to 3.9 m/s before optimization, which can be greatly improved to 4.6 m/s after optimization. It is found by simulation that the deformation is reduced after optimization with the same terminal load. The repeated positioning accuracy is ±0.010 5 mm before optimization, which is superior the traditional SCARA robot, and it is further improved to ±0.009 mm after optimization. Through simulation and experimental results, the genetic algorithm optimization can effectively solve the stability problem of the SCARA robot end, and can significantly improve the motion speed of the robot joint.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-01
  • 最后修改日期:2021-08-23
  • 录用日期:
  • 在线发布日期: 2023-03-09
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司