基于深度置信网络铝合金加筋板冲击损伤识别
作者:
作者单位:

作者简介:

通讯作者:

张法业,男,1984年12月生,博士、高级实验师。主要研究方向为装备故障诊断与寿命预测技术。 E-mail:zhangfaye@sdu.edu.cn

中图分类号:

TP183;TH39

基金项目:

国家自然科学基金资助项目(61903224, 62073193);山东省重大科技创新工程资助项目(2022CXGC020902);山东大学基本科研业务费资助项目(2021JCG008)


Impact Damage Identification of Aluminum Alloy Stiffened Plate Based on Deep Belief Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    铝合金加筋板是卫星、空间站和飞船等航空航天装备关键结构,对其损伤状态进行监测和识别是评估航天器健康状态的前提和基础。针对传统机器学习方法对人工特征提取的依赖性,利用实验模拟与数值仿真相结合的方法,获取铝合金加筋板损伤声发射信号并计算其幅频特性,建立损伤数据集,基于深度置信网络构建冲击损伤智能识别模型进行损伤特征自适应提取,结合Softmax分类器开展了冲击损伤识别研究,并与传统的支持向量机和反向传播(back propagation,简称BP)神经网络识别结果进行了对比。实验结果表明:在2 200 mm×500 mm×10 mm的铝合金加筋板板上对68个测试区域进行了多次冲击损伤识别,在15 300次实验中实现了15 218次冲击损伤准确识别,正确率为99.47%。该研究结果为航天器结构的损伤监测提供了有效方法。

    Abstract:

    Aluminum alloy stiffened panels are the key structural form of aerospace equipment such as airplanes, satellites, space stations, and cargo spacecraft. Monitoring and identifying their damage status is the prerequisite and basis for assessing the health status of spacecraft. Aiming at the dependence of traditional machine learning methods on artificial feature extraction, the method of combining experimental simulation and numerical simulation is used to obtain the damage acoustic emission signal of aluminum alloy stiffened plate and calculate its amplitude-frequency characteristics, establish a damage data set. Based on a deep belief network, the impact damage intelligent recognition model is constructed to extract the damage feature adaptively. Combined with the Softmax classifier, the impact damage recognition research is carried out, and the recognition results are compared with the traditional support vector machine and back propagation (BP) neural network. Experimental results show that: 68 test areas have been identified for multiple impact damage on a 2 200 mm×500 mm×10 mm aluminum alloy stiffened plate, and 15 218 times of impact damage have been accurately identified in 15 300 experiments. The correct rate is 99.47%. The research results provide an effective method for damage monitoring of spacecraft structures.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-12
  • 最后修改日期:2021-05-18
  • 录用日期:
  • 在线发布日期: 2023-03-09
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司