改进LPCDA算法及其在旋转机械故障诊断中的应用
作者:
作者单位:

作者简介:

通讯作者:

赵荣珍,女,1960年12月生,博士、教授、博士生导师。主要研究方向为旋转机械故障诊断。E-mail: zhaorongzhen@lut.cn

中图分类号:

TH133.33;TH165

基金项目:

国家自然科学基金资助项目(51675253); 兰州理工大学红柳一流学科建设资助项目


Improved LPCDA Algorithm and Its Application in Fault Diagnosis of Rotating Machinery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高维故障数据集中有效信息利用率低导致故障分类难度偏大的问题,提出一种线性主成分判别分析(linear principal component discriminant analysis, 简称LPCDA)的故障数据集降维算法。该算法将类间可分性判别与主成分计算的思想融入线性判别分析(linear discriminant analysis, 简称LDA)算法中,使算法拥有剔除相关信息和冗余特征的能力,从而可以更好地保留能够反映机械运行状态有价值的故障状态信息以及特征的主要成分。实验结果表明,本算法能够剔除高维故障数据集中的相关信息、冗余特征并保留特征主要成分,具有降低故障分类难度与提高自动辨识准确率的功能。该研究可为有效降低高维故障数据集的规模和故障的分类难度、提高有效信息的挖掘能力,提供了理论参考依据。

    Abstract:

    Aiming at the difficulty of fault classification caused by the low utilization rate of effective information in high-dimensional fault datasets, linear principal component discriminant analysis (LPCDA) is proposed to reduce the dimension of the fault datasets. The feature of this method is to integrate the idea of discriminability between classes and principal component calculation into the linear discriminant analysis(LDA) algorithm. Through these two ideas, the algorithm has the ability to eliminate relevant information and redundant features. Thus the valuable fault state information and the main components of the characteristics that can reflect the running state of the machine can be retained better. The algorithm has the characteristics of eliminating the relevant information, redundancy feature and the main components of the retained feature in the high-dimensional fault datasets, which has the function of reducing the difficulty of fault classification and improving the accuracy of automatic identification. This research can provide a theoretical reference for effectively reducing the scale of high-dimensional fault datasets, improving the ability to mine effective information and reducing the difficulty of fault classification.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-25
  • 最后修改日期:2021-04-01
  • 录用日期:
  • 在线发布日期: 2023-03-09
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司