基于神经网络的压电能量收集器性能预估模型∗
作者:
作者单位:

作者简介:

通讯作者:

张健滔,男,1979年7月生,副研究员、硕士生导师。主要研究方向为压电能量收集、超声电机技术。E-mail: zhangjt@shu.edu.cn

中图分类号:

TN384;TM619

基金项目:

国家自然科学基金资助项目(52175102);上海市自然科学基金资助项目(18ZR1414300,13ZR1416900)


Performance Prediction Model of Piezoelectric Energy Harvester Based on Artificial Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    设计了一款双稳态聚偏氟乙烯(polyvinylidene fluoride,简称PVDF)梁压电振动能量收集器,并介绍了该款收集器结构特点和工作原理。为了解决传统理论模型预测与能量收集器实际输出性能的偏差,利用人工神经网络对其结构参数、激励频率和收集电能之间的非线性关系进行建模。基于误差反向传播训练的多层前馈网络建立了双稳态PVDF梁压电能量收集器的人工神经网络模型。以质量块质量、PVDF压电梁的压缩距离以及外激振力频率作为输入变量,收集器输出电压均方根(root mean square,简称RMS)值作为输出变量,采集了不同条件下压电能量收集器的实验数据。通过将仿真预测结果与实验结果对比,验证了所设计的人工神经网络能有效地预测压电能量收集器的输出特性,且无需复杂的收集器理论建模。

    Abstract:

    A bistable polyvinylidene fluoride (PVDF) beam piezoelectric vibration energy harvester is designed. And its structural characteristics and working principle are introduced. In order to solve the deviation between the traditional theoretical model prediction and the actual output performance of the energy harvester, the artificial neural network is used to model the nonlinear relationship among its structural parameters, excitation frequency and electric energy. In this paper, an artificial neural network model of the bistable PVDF beam piezoelectric energy harvester is established based on a multi-layer feedforward network trained by error back propagation. The mass of the mass block, the compression distance of PVDF piezoelectric beam and the frequency of external excitation force are taken as input variables, and the output voltage root mean square (RMS) value of the harvester is taken as output variable. The experimental data of the piezoelectric energy harvester under different conditions are collected. The validity of the model is proved by comparing the simulation results. It is shown that the developed artificial neural network can effectively predict the output characteristics of the piezoelectric energy harvester without the need for complex theoretical modeling of the harvester.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-05
  • 最后修改日期:2021-04-22
  • 录用日期:
  • 在线发布日期: 2023-03-09
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司